

Graphene Oxide Sheets Decorated by Zinc Oxide Nanoparticles: An Efficient and Heterogeneous Reusable Catalyst for the Synthesis of 9-aryl-1, 8-dioxooctahydroxanthenes and 9-aryl-1, 8-dioxodecahydroacridines in Aqueous Media

Bharatkumar M. Sapkal* and Prakash K. Labhane

Department of Chemistry, MGSM'S A.S.C. College, Chopda 425107, Maharashtra, India

ABSTRACT Graphene oxide sheets decorated by ZnO nanoparticles (GO-ZnO) have been synthesized and characterized by fourier transform infrared spectroscopy, X-ray powder diffractometry, FESEM, transmission electron microscopy, and EDAX. Herein, we have developed a one-pot protocol for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxodecahydroacridines using GO-ZnO heterogeneous, recyclable and efficient catalyst in aqueous media. The aromatic aldehydes and dimedones were used as starting materials. The method has several fascinating advantages such as excellent yields, operational simplicity and short reaction times. The catalyst was effectively recycled up to six consecutive cycles without significant loss in its catalytic activity. Synthesized 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines were characterized using IR, ¹H-NMR, and ¹³C-NMR spectroscopy.

KEYWORDS Aromatic aldehydes, Dimedone, GO-ZnO catalyst, Heterocyclic compounds.

How to cite this article: Sapkal, B.M. and Labhane, P.K. Graphene Oxide Sheets Decorated by Zinc Oxide Nanoparticles: An Efficient, Heterogeneous Reusable Catalyst for the Synthesis of 9-aryl-1, 8-dioxooctahydroxanthenes and 9-aryl-1, 8-dioxodecahydroacridines in Aqueous Media, *Indian J. Heterocycl. Chem.*, **2023**, 33, 143–150. (<https://doi.org/10.59467/IJHC.2023.33.143>)

INTRODUCTION

Carbon-based catalysts have been projected as low-cost renewable “green catalysts” prepared from biomass or from household waste. Two dimensional layers of sp^2 bonded carbon have many advantages due to its easy fictionalizations. Graphene oxide (GO) has substantial interest due to presence of its high specific surface area, inexpensive, highly thermal conductivity, abundant functional sites, rich oxidation functional groups (e.g., hydroxyl, carboxyl, and epoxy groups), reuse potential, high mechanical strength,^[1] and excellent electrical conductivity.^[2] GO has attracted considerable attention in various field including sensors,^[3] biomedical,^[4] supercapacitors,^[5] catalysts,^[6] bioimaging,^[7] surfactant,^[8] and pollutant adsorbents.^[9] Recently, GO and its composite has gained interest as a new carbonate in organic conversions.^[10-15] GO sheets possess large surface areas, and

thus may be potential support materials to load functional nanomaterials. It has been found that GO and functionalized graphene materials widely used as heterogeneous catalyst due to high yield of product, easy recovery and integrated cost reduction. Nanocatalysis has been widely used in organic transformation as heterogeneous catalysts due to its high surface area and high chemical stability.^[16-19] Nanoparticles such as ZnO, TiO₂ and ZrO₂ with GO have been synthesized and used as heterogeneous catalyst in chemical synthesis and photocatalytic properties.^[20-22] ZnO nanoparticles has found application in optics, optoelectronics, sensors, and actuators due to its semiconducting, optical, and photoluminescence properties.^[23-25] ZnO nanoparticles have also been reported as used as heterogeneous catalyst for organic transformations.^[26-30] In the present work, we demonstrated the uniform inclusion of ZnO nanoparticles on GO. Rawat and coworker reported the catalytic application

*Corresponding author: Email: bharatkumar_sapkal@rediffmail.com

Published & Hosted by :

Journal Homepage :
www.connectjournals.com/ijhc

 CONNECT Journals™
www.connectjournals.com

2.33–2.54 (m, 8H, 4×CH₂), 4.77 (s, 1H, CH), 7.04 (d, 2H, Ar-H), 7.16 (d, 2H, Ar-H), 9.08 (s, 1H, NH).

9-Phenyl-3,4,6,7-tetrahydro-3,3,6,6-tetramethylacridine-1,8(2H,5H,9H,10H)-dione (4c)

IR (KBr, cm⁻¹): 3294, 2970, 1685, 1640, 1611; ¹HNMR (500 MHz, CDCl₃) δ: 0.94 (s, 6H, 2×CH₃), 1.05 (s, 6H, 2×CH₃), 2.11–2.31 (m, 8H, 4×CH₂), 5.08 (s, 1H, CH), 7.04–8.11 (m, 5H, Ar-H), 9.50 (s, 1H, NH) ppm;

9-(3-Nitrophenyl)-3,4,6,7-tetrahydro-3,3,6,6-tetramethylacridine-1,8(2H,5H,9H,10H)-dione (4d)

¹³C NMR (CDCl₃) δ: 22.6, 29.3, 31.9, 32.7, 34.0, 41.1, 50.5, 112.8, 121.2, 122.2, 128.6, 135.5, 148.4, 195.2

CONCLUSION

We have reported a highly efficient and cost-effective approach for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines in the presence GO-ZnO as a heterogeneous catalyst. This method offers shorter reaction time, a simple work-up procedure with high yield, use of small amount of catalyst, and recyclable heterogeneous catalyst. The GO-ZnO catalyst was used in aqueous synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines which are biologically interesting compounds. The detecting results could indicate our protocol make the reaction suitable for scale-up and commercialization.

REFERENCES

- [1] Abdullah, S.I. and Ansari, M.N.M. Mechanical properties of graphene oxide (GO)/epoxy composites, *HBRC J.*, **2015**, *11*, 151–156.
- [2] Jung, I., Dikin, D.A., Piner, R.D. and Ruoff, R.S. Tunable electrical conductivity of individual graphene oxide sheets reduced at “Low” temperatures, *Nano Lett.*, **2008**, *12*, 4283–4287.
- [3] Roy, S., Soin, N., Bajpai, R., Misra, D.S., McLaughlin, J.A. and Roy, S.S. Graphene oxide for electrochemical sensing applications, *J. Mater. Chem.*, **2011**, *21*, 14725–14731.
- [4] Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H. and Min, D.H. Biomedical applications of graphene and graphene oxide, *Acc. Chem. Res.*, **2013**, *46*, 2211–2224.
- [5] Zhang, K., Zhang, L.L., Zhao, X.S. and Wu, J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes, *Chem. Mater.*, **2010**, *22*, 1392–1401.
- [6] Pyun, J. Graphene oxide as catalyst: Application of carbon materials beyond nanotechnology, *Angew. Chem. Int. Ed. Engl.*, **2011**, *50*, 46–48.
- [7] Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sun, H. and Yang, B. Strongly green-photoluminescent graphene quantum dots for bioimaging applications, *Chem. Commun.*, **2011**, *47*, 6858–6860.
- [8] Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S. and Coleman, J.N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, *J. Am. Chem. Soc.*, **2009**, *131*, 3611–3620.
- [9] Zhao, G., Jiang, L., He, Y., Li, J., Dong, H., Wang, X. and Hu, W. Sulfonated graphene for persistent aromatic pollutant management, *Adv. Mater.*, **2011**, *23*, 3959–3963.
- [10] Chen, Y., Bai, X., Ji, Y. and Shen, T. Reduced graphene oxide-supported hollow Co₃O₄@N-doped porous carbon as peroxyomonosulfate activator for sulfamethoxazole degradation, *Chem. Eng. J.*, **2022**, *430*, 132951.
- [11] Bermudez, J.M., Menendez, J.A., Arenillas, A., Martinez-Palou, R., Romero, A.A. and Luque, R. Graphene oxide-catalysed oxidation reaction of unsaturated compounds under microwave irradiation, *Catal. Commun.*, **2015**, *72*, 133–137.
- [12] Bermudez, J.M., Menendez, J.A., Arenillas, A., Martinez-Palou, R., Romero, A.A. and Luque, R. Selectivity matters: Graphene oxide-mediated oxidative coupling of benzylamine to N-benzylidine-1-phenylmethanamine under microwave irradiation, *J. Mol. Catal. A Chem.*, **2015**, *406*, 19–22.
- [13] Kumar, A., Rout, L., Achary, L.S.K., Mohanty, S.K., Nayak, P.S., Barik, B. and Dash, P. Solvent free synthesis of chalcones over graphene oxide-supported MnO₂ catalysts synthesized via combustion route, *Mater. Chem. Phys.*, **2021**, *259*, 124019.
- [14] Mastalir, A., Király, Z., Patzko, A., Dékány, A. and L’Argentiere, P. Synthesis and catalytic application of Pd nanoparticles in graphite oxide, *Carbon*, **2008**, *46*, 1631–1637.
- [15] Narayanan, D.P., Gopalakrishnan, A., Yaakob, Z., Sugunan, S. and Narayanan, B.N. A facile synthesis of clay-graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction, *Arab. J. Chem.*, **2020**, *13*, 318–334.
- [16] Sapkal, B.M., Labhane, P.K., Disale, S.T. Alsaiari, A.A., Allahyani M., Aljuaid, A., Alsharif, A. and Asif, M. More, D.H. ZnO@ SnO₂ mixed metal oxide as an efficient and recoverable nanocatalyst for the solvent free synthesis of Hantzsch 1, 4-dihydropyridines, *Lett. Org. Chem.*, **2019**, *16*, 139–144.
- [17] Sapkal, B.M., Labhane, P.K. and Satam, J.R. In water-ultrasound-promoted synthesis of tetraketones and 2-substituted-1H-benzimidazoles catalyzed by BiOCl nanoparticles, *Res. Chem. Intermed.*, **2017**, *43*, 4967–4979.
- [18] Pardeshi, S.S., Labhane, P.K., Disale, S.T., More, D.H. and Sapkal, B.M. Regioselective synthesis of 3, 5-disubstituted isoxazole catalyzed by Cu₂O-ZnO nanocomposite, *ChemistrySelect*, **2022**, *7*, e202201818.
- [19] Cao, M., Wei, Y., Gao, S. and Cao, R. Synthesis of palladium nanocatalysts with cucurbit[n]uril as both a protecting agent and a support for Suzuki and Heck reactions, *Catal. Sci. Technol.*, **2012**, *2*, 156–163.
- [20] Al-Rawashdeh, N.A.F., Allabadi, O. and Aljarrah, M.T. Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for

the degradation of organic dyes, *ACS Omega*, **2020**, *5*, 28046–28055.

[21] Kumari, S., Shekhar, A. and Pathak, D.D. Graphene oxide-TiO₂ composite: An efficient heterogeneous catalyst for the green synthesis of pyrazoles and pyridines, *N. J. Chem.*, **2016**, *40*, 5053–5060.

[22] Saada, R., Kellici, S., Heil, T., Morgan, D. and Saha, B. Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/graphene nanocomposite catalyst, *Appl. Catal. B. Environ.*, **2015**, *168*, 353–362.

[23] Rao, B.B. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, *Mater. Chem. Phys.*, **2000**, *64*, 62–65.

[24] Zhang, B.P., Binh, N.T., Segawa, Y., Wakatsuki, K. and Usami, N. Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, *Appl. Phys. Lett.*, **2003**, *83*, 1635–1637.

[25] Kumar, V., Kumar, V., Som, S., Duvenhage, M.M., Ntwaeaborwa, O.M. and Swart, H.C. Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications, *Appl. Surf. Sci.*, **2014**, *308*, 419–430.

[26] Safaei-Ghom, J., Ghasemzadeh, M.A. and Zahedi, S. ZnO nanoparticles: A highly effective and readily recyclable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine and 1,8-dioxooctahydro-xanthene derivatives, *J. Mex. Chem. Soc.*, **2013**, *57*, 1–7.

[27] Kantam, M.L., Kumar, K.B.S. and Sridhar, C. Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles, *Adv. Synth. Catal.*, **2005**, *347*, 1212–1214.

[28] Sarvari, M.H. and Sharghi, H. Reactions on a solid surface. A simple, economical and efficient Friedel-Crafts acylation reaction over zinc oxide (ZnO) as a new catalyst, *J. Org. Chem.*, **2004**, *69*, 6953–6956.

[29] Kiamehr, M. and Moghaddam, F.M. An efficient ZnO-catalyzed synthesis of novel indole-annulated thiopyrano-chromene derivatives via Domino Knoevenagel-hetero-Diels-Alder reaction, *Tetrahedron Lett.*, **2009**, *50*, 6723–6727.

[30] Mirjafary, Z., Saeidian, H., Sadeghi, A. and Moghaddam, F.M. ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β -acetamido ketones/esters via a multi-component reaction, *Catal. Commun.*, **2008**, *9*, 299–306.

[31] Rajesh, U.C., Wang, J., Prescott, S., Tsuzuki, T. and Rawat, D.S. RGO/ZnO nanocomposite: An efficient, sustainable, heterogeneous, amphiphilic catalyst for synthesis of 3-substituted indoles in water, *ACS Sustain. Chem. Eng.*, **2014**, *3*, 9–18.

[32] Hatakeyama, S., Ochi, N., Numata, H. and Takano, S. A new route to substituted 3-methoxycarbonyldihydropyrans; enantioselective synthesis of (-)-methyl elenolate, *J. Chem. Soc. Chem. Commun.*, **1988**, *17*, 1202–1204.

[33] Poupelin, J.P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. and Lacroix, R. Synthesis and antiinflammatory properties of bis (2-hydroxy-1-naphthyl) methane derivatives. I. Monosubstituted derivatives, *Eur. J. Med. Chem.*, **1978**, *13*, 67–71.

[34] Mulakayala, N., Murthy, P.V.N., Rambabu, D., Aeluri, M., Adepu, R., Krishna, G.R., Reddy, C.M., Prasad, K.R.S., Chaitanya, M., Kumar, C.S., Rao, M.V. and Pal, M. Catalysis by molecular iodine: A rapid synthesis of 1, 8-dioxo-octahydroxanthenes and their evaluation as potential anticancer agents, *Bioorg. Med. Chem. Lett.*, **2012**, *22*, 2186–2191.

[35] Samantaray, S., Kar, P., Hota, G. and Mishra, B.G. Sulfate grafted iron stabilized zirconia nanoparticles as efficient heterogeneous catalysts for solvent-free synthesis of xanthenediones under microwave irradiation, *Ind. Eng. Chem. Res.*, **2013**, *52*, 5862–5870.

[36] Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. and Thomas, G. J. PCT Int. Appl. WO 9706178 *ChemAbstr.*, **1997**, *126*, 212377.

[37] Gorokhov, V. Y. and Makhova, T. V. Synthesis and Antibacterial Activities of Amines and Imines Containing (Aza, Thio) Xanthene Rings. *Pharma. Chem. J.*, **2016**, *50*, 530–533.

[38] Liu, D., He, Z., Zhao, Y., Yang, Y., Shi, W., Li, X. and Ma, H. Xanthene-based NIR-II dyes for *in vivo* dynamic imaging of blood circulation, *J. Am. Chem. Soc.*, **2021**, *143*, 17136–17143.

[39] Tilak, B.D. and Ayyangar, N.R. Acridine dyes, *Chem. Heterocycl. Comp.*, **1973**, *9*, 579–613.

[40] Gamega, S.A., Spicer, J.A., Atwell, G.J., Finlay, G.J., Baguley, B.C. and Deny, W.A. Structure-activity relationships for substituted bis (acridine-4-carboxamides): A new class of anticancer agents, *J. Med. Chem.*, **1999**, *42*, 2383–2393.

[41] Josephrajan, T., Ramakrishnan, V.T., Kathiravan, G. and Muthumary, J. Synthesis and antimicrobial studies of some acridinediones and their thiourea derivatives, *Arkivoc*, **2005**, *II*, 124–136.

[42] Parlar, S., Erzurumlu, Y., Ilhan, R., Kirmizibayrak, P.B., Alptütün, V. and Erciyas, E. Synthesis and evaluation of pyridinium-hydrazone derivatives as potential antitumoral agents, *Chem. Biol. Drug Des.*, **2018**, *92*, 1198–1205.

[43] Kahandal, S.S., Burange, A.S., Kale, S.R., Prinsen, P., Luque, R. and Jayaram, R.V. An efficient route to 1,8-dioxo-octahydroxanthenes and-decahydroacridines using a sulfated zirconia catalyst, *Catal. Commun.*, **2017**, *97*, 138–145.

[44] Jin, T.S., Zhang, J.S., Xiao, J.C., Wang, A.Q. and Li, T.S. Clean synthesis of 1, 8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media, *Synlett*, **2004**, *5*, 866–870.

[45] Mosaddegh, E., Islami, M.R. and Hassankhani, A. ZrOCl₂·8H₂O as an efficient and recyclable catalyst for the clean synthesis of xanthenedione derivatives under solvent-free conditions, *Arab. J. Chem.*, **2012**, *5*, 77–80.

[46] Dabiri, M., Baghbanzadeh, M. and Arzroomchilar, E. 1-Methylimidazolium trifluoroacetate ([Hmim] TFA): An efficient reusable acidic ionic liquid for the synthesis of 1, 8-dioxo-octahydroxanthenes and 1, 8-dioxo-decahydroacridines, *Catal. Commun.*, **2008**, *9*, 939–942.

[47] Hazeri, N., Masoumnia, A., Mghsoodlou, M.T., Salahi, S., Kangani, M., Kianpour, S., Kiaee, S. and Abonajmi, J. Acetic acid as an efficient catalyst for synthesis of 1, 8-dioxo-octahydroxanthenes and 1, 8-dioxo-decahydroacridines, *Res. Chem. Intermed.*, **2015**, *41*, 4123–4131.

[48] Khazaei, A., Moosavi-Zare, A.R., Mohammadi, Z., Zare, A., Khakyzadeh, V. and Darvishi, G. Efficient preparation of 9-aryl-1, 8-dioxo-octahydroxanthenes catalyzed by nano-TiO₂ with high recyclability, *RSC Adv.*, **2013**, *3*, 1323–1326.

[49] Javid, A., Heravi, M.M. and Bamoharram, F.F. One-pot synthesis of 1, 8-dioxo-octahydroxanthenes utilizing silica-supported Preyssler nano particles as novel and efficient reusable heterogeneous acidic catalyst, *E J. Chem.*, **2011**, *8*, 910–916.

[50] Karhale, S., Patil, M., Rashinkar, G. and Helavi, V. Green and cost-effective protocol for the synthesis of 1, 8-dioxo-octahydroxanthenes and 1, 8-dioxo-decahydroacridines by using sawdust sulphonic acid, *Res. Chem. Intermed.*, **2017**, *43*, 7073–7086.

[51] Shirini, F., Moghadam, P.N., Moayedi, S. and Seddighi, M. Nano-silica supported ethane-sulfonic acid: An efficient heterogeneous solid acid catalyst for one-pot synthesis of xanthene and acridine derivatives, *RSC Adv.*, **2014**, *4*, 38581–38588.

[52] Kokkirala, S., Sabbavarapu N.M. and Yadavalli, V.D.N. β -cyclodextrin mediated synthesis of 1, 8-dioxooctahydroxanthenes in water, *Eur. J. Chem.*, **2011**, *2*, 272–275.

[53] Karami, B., Hoseini, S.J., Eskandari, K., Ghasemi, A. and Nasrabadi, H. Synthesis of xanthene derivatives by employing Fe₃O₄ nanoparticles as an effective and magnetically recoverable catalyst in water, *Catal. Sci. Technol.*, **2012**, *2*, 331–338.

[54] Shirini, F., Abedini, M., Seddighi, M., Jolodar, O.G., Safarpoor, M., Langroodi, N. and Zamani, S. Introduction of a new bi-SO₃H ionic liquid based on 2, 2'-bipyridine as a novel catalyst for the synthesis of various xanthene derivatives, *RSC Adv.*, **2014**, *4*, 63526–63532.

[55] Esmaeilpour, M., Javidi, J., Dehghani, F. and Dodeji, F.N. Fe₃O₄@SiO₂-imid-PMAn magnetic porous nanospheres as recyclable catalysts for the one-pot synthesis of 14-aryl-or alkyl-14H-dibenzo[a,j]xanthenes and 1,8-dioxooctahydroxanthene derivatives under various conditions, *New J. Chem.*, **2014**, *38*, 5453–5461.

[56] Khazaei, A., Zolfigol, M.A., Moosavi-Zare, A.R., Zare, A., Khojasteh, M., Asgari, Z., Khakyzadeh, V. and Khalafi-Nezhad, A. Organocatalyst trityl chloride efficiently promoted the solvent-free synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-ones by *in situ* formation of carbocationic system in neutral media, *Catal. Commun.*, **2012**, *20*, 54–57.

[57] Ghashang, M., Mansoor, S.S. and Aswin, K. Succinimide-N-sulfonic acid: An efficient and recyclable catalyst for the one-pot synthesis of tetrahydrobenzo [c] acridine-8 (7H)-one derivatives, *J. Saudi Chem. Soc.*, **2017**, *21*, S44–S51.

[58] Fan, X., Hu, X., Zhang, X. and Wang, J. InCl₃·4H₂O-promoted green preparation of xanthenedione derivatives in ionic liquids, *Can. J. Chem.*, **2005**, *83*, 16–20.

[59] Hu H.T., Wang X.B., Liu F.M., Wang J.C. and Xu C.H. Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites: Optical and photocatalytic properties, *Synth. Met.*, **2011**, *161*, 404–410.

[60] Oskooie, H.A., Tahershamsi, L., Heravi, M.M. and Baghernejad, B. Cellulose sulfonic acid: An efficient heterogeneous catalyst for the synthesis of 1, 8-Dioxo-octahydroxanthenes, *J. Chem.*, **2010**, *7*, 717–720.

[61] Das, B., Thirupathi, P., Mahender, I., Reddy V.S. and Rao, Y.K. Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1, 8-dioxo-octahydroxanthenes and 1, 8-dioxo-decahydroacridines, *J. Mol. Catal. A Chem.*, **2006**, *247*, 233–239.

[62] Li, J.J., Tao, X.Y. and Zhang, Z.H. An effective bismuth trichloride-catalyzed synthesis of 1, 8-dioxo-octahydroxanthenes, *Phosphorus Sulfur Silicon Relat. Elem.*, **2008**, *183*, 1672–1678.

[63] Niknam, K., Panahi, F., Saberi, D. and Mohagheghnejad, M. Silica-bonded S-sulfonic acid as recyclable catalyst for the synthesis of 1,8-dioxo-decahydroacridines and 1,8-dioxo-octahydroxanthenes, *J. Heterocycl. Chem.*, **2010**, *47*, 292–300.

[64] Shirini, F., Abedini, M. and Pourhasan, R. N-sulfonic acid poly (4-vinylpyridinium) chloride: A novel polymeric and reusable catalyst for the preparation of xanthenes derivatives, *Dyes Pigm.*, **2013**, *99*, 250–255.

[65] Mansoor, S.S., Aswin, K., Logaiya, K. and Sudhan, S.P.N. Aqua-mediated synthesis of acridinediones with reusable silica-supported sulfuric acid as an efficient catalyst, *J. Taibah Univ. Sci.*, **2014**, *8*, 265–275.

[66] Nasr-Esfahani, M., Rafiee, Z. and Kashi, H. Nanoparticles tungstophosphoric acid supported on polyamic acid: Catalytic synthesis of 1,8-dioxo-decahydroacridines and bulky bis(1,8-dioxo-decahydroacridine)s, *J. Iran. Chem. Soc.*, **2016**, *13*, 1449–1461.

Received: 24 Oct 2022; Accepted: 18 Mar 2023