

Synthesis, Characterization and Molecular Docking Studies of 4-(5-Alkylsulfanyl-(1,3,4)oxadiazol-2-yl methyl)-7-methyl chromene-2-ones

Ganga Reddy Gaddam¹, Ramakrishna Reddy Sudugu¹, Venkata Ramana Reddy Chittireddy^{1*}, Srinivasa Reddy Bireddy², Laxminarayana Eppakayala³

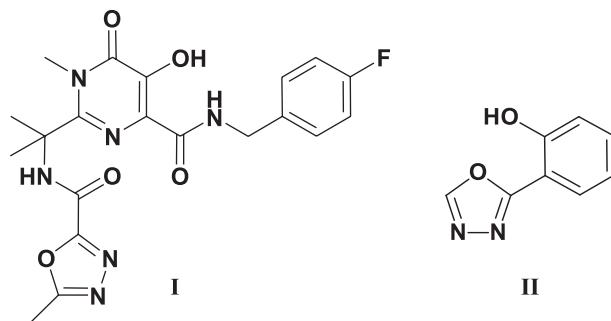
¹Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, India

²Department of Chemistry, Mahatma Gandhi Institute of Technology, Kokapet, Gandipet, Hyderabad, Telangana, India

³Department of Chemistry, Sreenidhi Institute of Science and Technology (Autonomous) Yammampet, Ghatkesar, Hyderabad, Telangana, India

ABSTRACT A series of 4-(5-alkylsulfanyl-[1,3,4]oxadiazol-2-ylmethyl)-7-methyl-chromen-2-ones (**5a-d**) was synthesized from (7-methyl-2-oxo-2H-chromen-4-yl)-acetic acid (**1**) as starting material. The structures of the synthesized new compounds were confirmed by their ¹H-NMR, IR, and mass spectral data. The molecular docking studies of the compounds have been carried out to predict the possible anti-depressant activity.

KEYWORDS Chromens, Condensation and docking studies, Esterification, Oxadiazoles.


How to cite this article: Gaddam, G.R., Sudugu, R.R., Chittireddy, V.R.R., Bireddy, S.R., Eppakayala, L. Synthesis, Characterization, and Molecular Docking Studies of 4-(5-Alkylsulfanyl-(1,3,4)oxadiazol-2-yl methyl)-7-methyl chromene-2-ones, *Indian J. Heterocycl. Chem.*, **2022**, 32, 449–453. (DocID: <https://connectjournals.com/01951.2022.32.449>)

INTRODUCTION

The oxadiazole is known to show broad range of therapeutic activities such as antibacterial,^[1] anticonvulsant,^[2] anti-cancer,^[3] hypoglycemic,^[4] antipyretic,^[5] anti-tubercular,^[6] anti-fungal,^[7] immunosuppressive, spasmolytic, and antioxidant,^[8] anti-inflammatory,^[9] insecticidal,^[10] central nervous system stimulant, anti-amoebic, antiemetic, anti-anthelmintic, vasodilator, antimycotic, and antidepressant,^[11] and anti-allergic activities.^[12] The oxadiazole nucleus with N=C-S linkage exhibits various pharmacological activities.^[13]

The stable oxadiazoles are present in various drugs including Fasiplon(**I**) and Fenadiazole (**II**). The chemistry of oxadiazole has greatly evolved. Many pharmaceuticals have an oxadiazole moiety in connection with various heterocyclic rings.^[14,15]

In view of the biological applications of chromes and oxadiazoles, a series of new heterocyclics, 4-(5-alkylsulfanyl-[1,3,4]oxadiazol-2-ylmethyl)-7-methyl-chromen-2-ones (**5a-d**) has been synthesized. The chemical

structures of these compounds were confirmed by ¹H-NMR, IR, Mass, and ¹³C NMR.

RESULTS AND DISCUSSION

Chemistry

The target compounds (**5a-d**) were synthesized according to the reactions sequence outlined in **Scheme 1** starting from

*Corresponding author: Email: vrr.chttireddy@gmail.com

(C=N), 1152 (C-O), 677 (C-S) cm^{-1} ; ^1H NMR (300 MHz, DMSO-d₆): δ ppm 7.74 (s, 1H, Ar-H), 7.65 (s, 1H, =CH), 7.62 (d, 1H, J = 7.2 Hz, Ar-H), 7.55 (d, 1H, J = 7.2 Hz, Ar-H), 3.66 (s, 2H, CH₂), 2.53 (t, 2H, J = 5.0 Hz, CH₂), 2.44 (s, 3H, CH₃), 2.36 (m, 2H, CH₂), 1.87 (m, 2H, CH₂), 1.19 (t, 3H, J = 5.6 Hz, CH₃). MS: 330 m/z (M⁺). Elemental analysis: Calculated for C₁₇H₁₈N₂O₃S: C-61.80, H-5.49, N-8.48, O-14.53, S-9.70. Found: C-60.58, H-5.32, N-8.12, O-13.98, S-9.48.

CONCLUSION

4-(5-Alkylsulfanyl-[1,3,4]oxadiazol-2-ylmethyl)-7-methyl-chromen-2-ones (**5a-d**) have been synthesized. All the synthesized compounds exhibited good binding score, according to molecular docking experiments. Molecular studies indicated possible antidepressant activity of all the compounds.

ACKNOWLEDGMENTS

The authors are thankful to Jawaharlal Nehru Technological University Hyderabad, India for providing necessary facilities to carry out this work.

REFERENCES

- [1] Othman, A.A., Kihel, M., Amara, S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents, *Arabian J. Chem.*, **2019**, *12*, 1660–1675.
- [2] Mohammadi-Khanapostani, M., Shabani, M., Faizi, M., Aghaei, I., Jahani, R., Sharafi, Z., Zafarghandi, N.S., Mahdavi, M., Akbarzadeh, T., Emami, S., Shafiee, A., Foroumadi, A. Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1,2,4-oxadiazoles as potential anticonvulsant agents, *Eur. J. Med. Chem.*, **2016**, *112*, 91–98.
- [3] Zhang, J., Wang, X., Yang, J., Guo, L., Wang, X., Song, B., Dong, W., Wang, W. Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: Design, synthesis and cytotoxic evaluation, *Eur. J. Med. Chem.*, **2020**, *186*, 111897.
- [4] Iqbal, A.M., Khan, A.Y., Kalashetti, M.B., Belavagi, N.S., Gong, Y.D., Khazi, I.A.M. Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring, *Eur. J. Med. Chem.*, **2012**, *53*, 308–315.
- [5] Siwach, A., Verma, P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds, *BMC Chem.*, **2020**, *14*, 70.
- [6] Ningegowda, R., Chandrashekharappa, S., Singh, V., Mohanlall, V., Venugopala, K.N. Design, synthesis and characterization of novel 2-(2, 3-dichlorophenyl)-5-aryl-1,3,4-oxadiazole derivatives for their anti-tubercular activity against *Mycobacterium tuberculosis*, *Chem. Data Collect.*, **2020**, *28*, 100431.
- [7] Zhang, M.Z., Jia, C.Y., Gu, Y.C., Mulholland, N., Turner, S., Beattie, D., Zhang, W. H., Yang, G.F., Clough, J. Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues, *Eur. J. Med. Chem.*, **2017**, *126*, 669–674.
- [8] Kotaiah, Y., Harikrishna, N., Nagaraju, K., Rao, C.V. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives, *Eur. J. Med. Chem.*, **2012**, *58*, 340–345.
- [9] Sondhi, S.M., Kumar, S., Kumar, N., Roy, P. Synthesis anti-inflammatory and anticancer activity evaluation of some pyrazole and oxadiazole derivatives, *Med. Chem. Res.*, **2011**, *21*, 3043–3052.
- [10] Yang, Z., Li, P., He, Y., Luo, J., Zhou, J., Wu, Y., Chen, L. Design, synthesis, and biological evaluation of novel pyrethrin derivatives containing 1,3,4-oxadiazole and thioether moieties as active insecticidal agents, *Chem. Papers*, **2019**, *74*, 1621–1632.
- [11] Wang, S., Qi, L., Liu, H., Lei, K., Wang, X., Liu, R. Synthesis of 1,3,4-oxadiazoles derivatives with antidepressant activity and their binding to the 5-HT1A receptor, *RSC Adv.*, **2020**, *10*, 30848–30857.
- [12] Guda, D.R., Park, S.J., Lee, M.W., Kim, T.J., Lee, M.E. Syntheses and anti-allergic activity of 2-((bis(trimethylsilyl)methylthio/methylsulfonyl)methyl)-5-aryl-1,3,4-oxadiazoles, *Eur. J. Med. Chem.*, **2013**, *62*, 84–88.
- [13] De Oliveira, C.S., Lira, B.F., Barbosa-Filho, J.M., Lorenzo, J.G., De Athayde-Filho, P.F. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: a review of the literature from 2000–2012, *Molecules*, **2012**, *17*, 10192–10231.
- [14] Karabelyov, V., Kondeva-Burdina, M., Angelova, V.T. Synthetic approaches to unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles and their MAO-B inhibitory activity. A review, *Bioorg. Med. Chem.*, **2021**, *29*, 115888.
- [15] Balaraju, V., Kalyani, S., Sridhar, G., Laxminarayana, E. Design, synthesis and biological assessment of 1,3,4-oxadiazole incorporated oxazole-triazole derivatives as anticancer agents, *Chem. Data Collect.*, **2021**, *33*, ???.
- [16] Bommera, R.K., Kethireddy, S., Govindapur, R.R., Eppakayala, L. Synthesis, biological evaluation and docking studies of 1,2,4-oxadiazole linked 5-fluorouracil derivatives as anticancer agents, *BMC Chem.*, **2021**, *15*, 30.

Received: 19 Jul 2022; Accepted: 07 Sep 2022

