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ABSTRACT Heterocycle-fused quinolinone scaffolds are important structures in drug discovery. There remain challenges 
for effectively synthesizing such heterocyclic compounds mainly due to the inefficient synthetic processes currently used. 
A simple and efficient method has been developed for the synthesis of 3-(1-ethylpiperidin-2-yl)quinolin-2(1H)-one using 
commercially available 2-chloroquinoline as starting material, through nucleophilic substitution, Suzuki coupling, catalytic 
reduction, and reductive amination reactions with a total yield of 24.5% for the final product. Theoretical analysis with 
density functional theory B3LYP has been conducted to gain insights into the possibility of the formation of the target 
product and its tautomer 3-(1-ethylpiperidine-2-yl) quinoline-2-ol.

INTRODUCTION

Heterocycles are present in a wide range of organic 
compounds which are of interest in biology, pharmaceuticals, 
and medicine.[1-6] Among many pharmaceutically relevant 
heterocycles, the heterocycle-fused quinolinone scaffold 
is one of the important structures in drug discovery, and 
its derivatives have demonstrated various biological and 
pharmaceutical activities, such as anti-inflammatory, 
anti-cancer, anti-diabetic, and anti-psychotic effects.[7-10] 
For example, cilostazol, dovitinib, and indacaterol have 
been developed for the treatment of chronic peripheral 
arterial occlusive disease,[11] diverse cancers,[12-15] and 
chronic obstructive pulmonary disease,[16,17] respectively. 
The biological and pharmaceutical activities of those 
heterocycles have been largely attributed to the inclusion of 
the ring structure of piperidine and/or pyridine, which are 
among the top 25 heterocycles that occur frequently in drug 
molecules.[18]

Due to the importance of quinolinone derivatives, 
great efforts have been made to develop efficient and 
sustainable synthetic procedures for the preparation of 
these scaffolds.[1,9] The currently reported synthetic routes to 

quinolinone derivatives can be mostly categorized into two 
groups; (i) directly using quinoline compounds as starting 
materials and (ii) constructing the quinoline rings. Through 
the first route, for example, cilostazol was synthesized with a 
well-established procedure starting from N-[(4-chlorobutyl)
carbonyl]cyclohexylamine, however with challenges for 
effective removing the potential toxic impurities from the 
product.[19,20] Using readily available N-methoxyquinoline 
and ammonium tetrafluoroborate as raw materials 
2-quinolinone derivatives and N-hydroxyquinolinone were 
formed through an easy-to-operate process, where, however, 
expensive starting materials and long reaction time were 
required.[21] More recently, a further simpler synthetic routed 
was developed to synthesize 3-alkyl quinolone compounds 
with a high atomic economy, but having limitations in 
terms of expensive starting materials and harsh reaction 
conditions.[7]

In the second group of synthetic routes, the synthesis 
involves the construction of quinoline rings. For example, 
3-aryl/alkyl-2-quinolones was synthesized with a 
heterogeneous palladium nanoparticle-based catalyst 
and assisted by microwave radiation, that again required 
expensive starting materials with a low total yield.[22] To 
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was heated at 85°C for 5 h. The mixture was concentrated 
under vacuum. To the residue was added saturated aqueous 
NaHCO3 (50 mL). The mixture was, then, extracted with 
EtOAc (50 mL × 3). The organic layer was combined, dried 
over Na2SO4, and concentrated. The residue was purified by 
silica gel chromatography eluted with EtOAc to afford the 
title compound as white solid (853 mg, 80.9%). 1H NMR 
(300 MHz, DMSO): δ 11.76 (s, 1H), 7.88 (s, 1H), 7.69 (dd, 
J = 8.1 Hz, 1.5 Hz, 1H), 7.48–7.42 (m, 1H), 7.31–7.26 (m, 
1H), 7.18–7.12 (m, 1H), 3.52–3.47 (m, 1H), 3.17–3.10 (m, 
1H), 2.58–2.53 (m, 1H), 2.10–1.96 (m, 2H), 1.79–1.47 (m, 
4H), 1.36–1.16 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). HRMS (EI, 
m/z) M+: Calcd for C16H20N2O: 256.1576; found: 256.1579.

CONCLUSION

A simple and efficient synthetic method has been 
developed for the synthesis of the pharmaceutically 
important quinolinone compound 3-(1-ethylpiperidin-2-yl) 
quinolin-2(1H)-one. 2-Chloroquinoline was introduced as 
a starting material followed by nucleophilic substitution, 
Suzuki coupling, catalytic reduction, and reductive amination 
reactions to yield the final product 3-(1-ethylpiperidin-2-yl) 
quinolin-2(1H)-one with a total yield of 24.5%. Theoretical 
studies with DFT B3LYP found that the HF value of the 
target product was 0.012664 Hartree less than that of its 
possible tautomer, suggesting that target product be more 
stable than that of its tautomer. At present, studies on the 
biological activity of the synthesized compound are under 
active investigation in our laboratories.
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