

Biological Prediction from Computational Approach, Synthesis, and Biological Evaluations of Newer Thiazolidine-2,4-dione Conjugates

Jaydeep A. Patel^{1,2}, Navin B. Patel^{2*}, Manesh S. Tople²

¹Department of Chemistry, Vidhyadeep Institute of Science, Anita, Kim-Olpad Road, Surat - 394110, Gujarat, India

²Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat - 395007, Gujarat, India

ABSTRACT Thiazolidine-2,4-dione is a toxophoric unit and its derivatives act as antimicrobial and antitubercular agents. Computational approach two-dimensional quantitative structure-activity relationship (2D-QSAR) was used to predict antitubercular activity of the thiazolidine-2,4-dione derivatives. 2D-QSAR generated model using partial least squares regression method which predicted the statistically significant $r^2 = 0.3868$, $q^2 = 0.0193$, $\text{pred}_r^2 = 0.5240$, and F test = 3.7855. 2D-QSAR model equation denoted $\log(1/\text{MIC})$ of the antitubercular activity correlated with thermodynamic descriptor $\text{SAMostHydrophobicHydrophilicDistance}$. Biological predicted derivatives of thiazolidine-2,4-dione (*Z*)-*N*-(2-(2,4-dichlorophenoxy)phenyl)-2-(5-substitutedene-2,4-dioxothiazolidin-3-yl)acetamide (\mathbf{C}_1 - \mathbf{C}_{10}) were synthesized and spectrally evicted from IR, ^1H NMR, ^{13}C NMR and Mass spectral data analysis as well as biologically evaluated against antitubercular and antimicrobial activities. From the biologically evaluated derivatives, compounds \mathbf{C}_1 , \mathbf{C}_2 , \mathbf{C}_3 and \mathbf{C}_6 were found to be active against the different antimicrobial species. Compounds \mathbf{C}_1 , \mathbf{C}_3 and \mathbf{C}_{10} are more progressive than others against antitubercular species.

KEYWORDS Two-dimensional structure-activity relationship, Partial least squares regression method, $\text{SAMostHydrophobicHydrophilicDistance}$, Thiazolidine-2,4-dione, Antimicrobial activity, Antitubercular activity.

How to cite this article: Patel JA, Patel NB, Tople MS. Biological Prediction from Computational Approach, Synthesis, and Biological Evaluations of Newer Thiazolidine-2,4-dione Conjugates, *Indian J. Heterocycl. Chem.*, **2021**, *31*, 379–387.

(DocID: <https://connectjournals.com/01951.2021.31.379>)