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Abstract: The concept of competing risk arises in studies where failure of a system occurs due to one among several mutually
exclusive causes. In this article, we consider the case when the lifetime of an individual or a component follows an inverse
Maxwell distribution. In classical approach, we obtained the point, asymptotic confidence interval and boot-p interval
estimation of the parameters of inverse Maxwell distribution. We also applied Bayesian approach under square error loss
function to obtain point and highest posterior density interval estimation. For illustration, simulation result is established.
Finally two real data sets are analyzed in support of study.
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ORIGINAL ARTICLE

1. Introduction
Maxwell distribution has broad application in many

fields such as in statistical physics, physical chemistry,
and their  related areas. Besides all these it  has good
number of applications in reliability theory also. The
Maxwell  distribution  was  first  used  as  lifetime
distribution  by  Tyagi  and  Bhattacharya  (1989).
Inferences based on generalized Maxwell distribution
have been discussed by Chaturvedi and Rani (1998).
Estimation of  reliability  characteristics  for  Maxwell
distribution under Bayes paradigm was discussed by
Bekker and Roux (2005). Radha and Vekatesan (2013)
discussed  the  prior  selection  procedure  in  case  of
Maxwell probability distribution. Krishna and Malik
(2012)  obtained  the  Bayes  estimators  of  parameters
and reliability functions of Maxwell distribution under
progressive type-II censoring scheme. Dey and Maiti
(2010) proposed  the  Bayesian  estimation  of  the
parameter  for  the  Maxwell  distribution. Tomer  and
Panwar (2015) discussed the estimation procedure for

the parameter of Maxwell distribution in the presence
of progressive type-I hybrid censored data. Panwer et
al.  (2015)  presented  the  competing  risk  data  for
Maxwell distribution for independent cause of failure.
Later, Modi and Gill (2015) and Saghir and Khadim
(2016) proposed lengths biased Maxwell distribution and
discussed its various properties. Tomer (2016) discussed
the maximum likelihood analysis of masked data under
dependent competing risk generalized life distribution
model and obtained the Maximum likelihood estimates
of various parameters and masking probabilities using
EM  algorithm.  Furthermore,  several  generalizations
based  on  Maxwell  distribution  are  advocated  and
statistically justified. Recently, two more extensions of
Maxwell distribution have been introduced by Sharma
et al. (2017, 2018) and discussed the classical as well
as Bayesian estimation of the parameter along with
the real-life application. Patel and Patel (2018)
considered the double priors for the parameter of
inverted exponential distribution and obtained the
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estimates of unknown parameter for quadratic loss
function under Type-II censoring. Bhavsar and Patel
(2019) discussed the Bayesian estimation for the
parameters of the mixture of power function distribution
under Type-II censoring. Kumar and Kumar (2020)
discussed the classical and Bayesian estimation
procedures of the parameters of inverse distribution by
using randomly censored data. Tomer and Panwar
(2020) had discussed inverse Maxwell distribution
(InvMWD) with its statistical properties. They had
obtained maximum likelihood  estimates  under  classical
and  Bayesian approaches and discussed applicability
of distribution in different fields.

A random variable X follows Maxwell distribution
(MWD) if its probability density function is given by
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where,   is the scale parameter..

Inverse maxwell distribution
If X has a Maxwell distribution then the random

variable 
1Y
X

  is said to follow inverse Maxwell

distribution (InvMWD). The pdf of inverse Maxwell
distribution may be obtained by using the transformation.
We have
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The survival function is given by
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where,   1
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gamma function. The hazard function,
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  of InvMWD is upside down bathtub

in nature i.e., it increases sharply in initial phase then
after reaching a peak point it deeps gradually and
tending to zero. This means InvMWD represents the
lifetime of such individuals/items which have an

increasing chance of failing in early age of life span
after survival up to a specific age, the rate of failure
start decreasing as age increases.
2. Methodology

Suppose we have n such systems that each having
k-components in series attachment. Here

1 2 nY ,Y , ,Y are the failure of all such systems where

 1 2 1 2 1 2i i i ikY min Y ,Y ,Y ;i , , ,n,k , , ,K       and

ikY  represents the failure time of kth component of ith
system.  Then the competing risk is represented

by  1 2i iY ,S ;i , , ,n  , where iS  is the cause of failure
of ith system. Then the likelihood is given by
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where   1 2k
iS ;k , , ,K   indicates the system failed

due to kth component and kn  denotes the number of
components failed due to kth component. The likelihood
comes out to be
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Here for the ease of the problem we are
considering 3K  . Then, taking logarithm of (5), we
get the log likelihood as
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Differentiating the log-likelihood partially with

respect to  1 2 3k ; k , ,  , and equating them to zero,
we get the following expression which are used to

obtain the MLEs of  1 2 3k ; k , ,  , through numerical
procedure.
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where  1 2 3*K , , .

2.1 Asymptotic confidence intervals (ACIs)
The approximate (observed) asymptotic variance-

covariance matrix for the MLE of parameters 1 , 2

and 3  can be found by inverting  ˆI   as
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Thus, using above equation we get the

 100 1 %  confidence limits for Kθ̂ (k = 1, 2, 3) are
given by
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normal variate. The required calculations are given
below
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All non-diagonal elements, 
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2.2 Boot-p Intervals
In case the number of sample observations in

experiment is not very large ACIs mentioned above
are not suitable. So, we provide another procedure to
obtain bootstrap CIs for ̂  advocated by Efron and
Tibshirani (1986). The steps for applying parametric
bootstrap method are given below:

1. Based on the original

sample  1 2 ny y , y , , y ,   obtain the MLE

of ̂ .

2. Under the same conditions generate sample,

say  1 2 mx ,x , ,x , from the underlying

distribution InvMWD   ̂ .

3. Compute the MLE of ̂  based

on  1 2 mx ,x , ,x ,  say *̂ .

4. Repeat step (2) and (3) B times  1 2
* * *

B, .

5. Arrange 1 2
* * *

B, .   in ascending order..

6. A two-sided  100 1 %  percentile bootstrap

confidence interval of  , say    * *
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2.3 Bayesian estimation
Under the Bayesian paradigm   is considered as

a random variable. Let us consider inverted gamma

distribution as prior distribution  k kIG ,   of k  where
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Table 2:  Average length of interval estimates along with their coverage probabilities of 1 , 2   and 3  for 20n  , 30 and 50.

                                     ACI Boot-t                                   HPD

n 1̂ 2̂ 3̂ 1̂ 2̂ 3̂ 1̂ 2̂ 3̂

20 1.4640 1.4189 1.6654 1.3516 1.3156 1.4521 0.8942 0.9007 0.9110
93.86 86.99 95.98 97.12 91.12 95.45 99.33 99.67 99.42

30 1.1081 1.084 1.2382 0.9008 0.9849 0.9381 0.8193 0.8308 0.8410
93.13 89.12 93.91 95.13 87.12 96.9 98.83 98.58 98.67

50 0.8224 0.8105 0.9085 0.7524 0.7405 0.8185 0.7107 0.7275 0.7448
93.75 87.71 92.58 91.75 89.71 93.58 98.5 97.67 96.25

Merging the joint prior density with the likelihood
function, the required joint posterior, up to proportionality,
comes out to be
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From the above expression we observe that the

marginal distributions of  1 2 3k k , ,  cannot be
obtained in the closed form, which is essential in order
to obtain the Bayes estimates of individual parameters

or to obtain the parametric functions. Therefore, for
further analysis, we proceed to Gibbs Sampler. For this
we have to obtain the full condition distributions for

 1 2 3k k , ,  , which are given below as:
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2.4 MCMC Method
We use Metropolis-Hastings algorithm method with

proposal density normal distribution to generate sample

observations from    1 2 3k k | d , k , ,    given in
Equation (13). The Metropolis-Hastings Algorithm has
the following steps:

1. Set t =1 and take 0 0
1 1 1 2 ,ˆ ˆ  = θ θ and 0

3 3
ˆ = θ .

2. Generate a candidate point  *
k  from proposal

density   k k kq ~ N  ,ˆ V ˆθ θ   and take a point

u from a uniform distribution U (0, 1).
3. Then compute an acceptance ratio
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Table 1: Average values of point estimate of 1 , 2  and 3 along their MSEs (in Bracket) for 20n  , 30 and  n = 50.

                         MLEs                        Bayes Estimates
  n 

1 
2   

3  
1  

2           
3

  20 1.2110 1.2323 1.2852 1.2813 1.3032 1.3295
(0.0990) (0.0912) (0.0992) (0.0300) (0.0243) (0.0220)

 30 1.2220 1.2640 1.3076 1.2778 1.3078 1.3323
(0.0740) (0.0718) (0.0786) (0.0289) (0.0251) (0.0230)

50 1.2210 1.2750 1.3233 1.2660 1.3019 1.3381
(0.0480) (0.0568) (0.0523) (0.0248) (0.0245) (0.0211)



Table 3: Average MLE and bayes estimates of the parameters for 1 , 2   and  3  for  Hoel data.

                                                 ML Estimates                                        Bayes Estimates

1̂ 2̂ 3̂ 1̂ 2̂ 3̂

Hoel Data 3.6311 1.6336 3.0978 3.6648 1.6521 3.1297
Abortion Data 22.9683 4.4925 25.5069 22.9325 4.5344 25.5673
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otherwise    1t t
k k   .

5. Set 1t t  .
6. Repeat steps (2)-(4), N times to get the

chain 1 2
1 1 1

N, , ,   , 1 2
2 2 2

N, , ,    and
1 2
3 3 3

N, , ,   , where N is very large number..

After the convergence of chain, we obtain *N  out

of N samples, say 1 2
1 1 1

*N, , ,,    1 2
2 2 2

*N, , ,    and

1 2
3 3 3

*N, , ,,    with the help of these sample
observations, we obtain the Bayes estimates for the
parameters. We also obtain Bayesian credible and HPD
intervals for   by using algorithm given by Chen and
Shao (1999).
3. Simulation Study

In this section, we perform the simulation study to
verify theoretical results numerically and check the
performance of estimators. Since we have considered
the three-component series systems, so actual values

taken in computation are 1 21 2 1 25. , .    and

3 1 3.  . The simulation study is carried out for sample
size 20 30n ,  and 50. In this section, we perform the
simulation study to verify the theoretical results
numerically and check the performance of estimators.
Based on this, the MLE, ACI and Boot-p CIs are
calculated. We repeat each generation and estimation
procedures 1000 times and give average values of point
estimates and corresponding mean square errors
(MSEs) in Table 1. We also provide average length
and coverage probabilities (CP) given in Table 2.

The Bayes estimates and HPD intervals are
obtained using Gibbs Sampler in which samples are
drawn from full conditional using Metropolis-Hasting
algorithm. We run the three different chains by
generating 50000 observations. For diagnosis of the
convergence of chains, we draw Cumuplot at 5%, 50%
and 95% quantiles. Outcomes of Cumuplot function
applied to MCMC samples are given in Fig. 1 for 1 2, 

and 3 ,  respectively. For the arbitrarily chosen values

of prior parameters 1 1 1 1 25 5 5 2 2, , ,n ,n      

and 3 2n  , we present the average values of Bayes
estimates along with their MSE’s for 1000 repeated
samples. The Bayes estimates and their MSEs are given
in Table 1 and HPD with coverage probabilities are
presented in Table 2.
Hoel Data: Here in our Analysis, we have used Hoel

Fig. 1: Cumsum plot for quantiles at 5%, 50% and 95% for 1 2,  and 3
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Table 5: Upper and lower limit of interval estimates along with average length for abortion data.

                                               ACI Boot-t HPD

1̂ 2̂ 3̂ 1̂ 2̂ 3̂ 1̂ 2̂ 3̂

Lower 19.9282 3.7561 22.1785 20.0071 4.3376 21.3755 19.9561 3.9509 21.7069
Upper 26.0084 5.2288 28.8352 25.8676 4.6663 29.3898 25.7150 5.2218 28.1149
Length 6.0802 1.4727 6.6568 5.8605 8.0143 6.5258 5.7589 1.2709 6.4079

Table 4: Upper and lower limit of interval estimates along with average length for hoel data.

                                               ACI Boot-t HPD

1̂ 2̂ 3̂ 1̂ 2̂ 3̂ 1̂ 2̂ 3̂

Lower 3.3623 1.4893 2.8598 2.9879 1.4147 2.3243 3.1032 1.3299 2.5730
Upper 3.8999 1.7780 3.3357 4.3156 1.9060 3.9879 4.3935 1.9583 3.6737
Length 1.261 0.6767 1.1173 1.3114 0.4964 1.6881 1.2528 0.6622 1.0862

(1972) data. Hole’s data, arise from a laboratory
experiment in which male mice of strain RFM were
given radiation dose 300 rats at 5 to 6 weeks old. There
are two groups of mice: conventional lab environment
(group 1) and germ-free environment (group 2). The
survival times are measured in days and the causes of
death are (1) (thymic lymphoma), (2) (reticulum cell
sarcoma), and (3) (other). For calculation purpose data
is scaled by dividing 1000. The point and interval
estimates for Hoel data is given in Table 3 and 4.
Abortion data: Abortion data set is available in R
package 'mvna'. The data is about the outcomes of
pregnancies exposed to coumarin derivatives. The aim
is to investigate whether exposition to coumarin
derivatives increases the probability of spontaneous
abortions. Apart from spontaneous abortion, pregnancy
may end in induced abortion or live birth.  The data
contains 1186 observations of the 5 variables in two
groups (control and exposed to coumarin derivatives)
and the cause of failure are induced abortion, life birth
and spontaneous abortion. We consider group 2 for the
analysis purpose which contains the 173 observations.
Exit times are taken as the time of events. For
calculation purpose data is scaled by dividing 100. The
estimates are given for the considered abortion data in
Table 3 and 5.
4. Discussion and Conclusion

From the simulation study, it can be easily seen
that as sample size increases the MSEs of the respective
estimates decrease rapidly. As sample size increases
average length of intervals also decreases with
increasing coverage probability which is obvious and

certify all theoretical derivation. ACI’s are always
symmetric, but boot-p and HPD CIs shows the actual
nature of the parameter estimator. It can also be
observed that the HPDs have shorter lengths then that
of ACIs and Boot-t such that it provides us results in
more precise manner. And we can recommend
Bayesian inferential in place of classical estimation
procedure.

 Since the distribution with upside down bathtub
hazard rate model are rarely used for competing risk
analysis. So, all such experiments where individuals/
items in competing cause and follows upside down
bathtub hazard rate, this study can be utilized easily.
We can guaranty more accurate results rather than
using any other model can achieve which is not
appropriate for the system.
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