

EFFECT OF JASMONATES ON OSMO-PROTECTANTS IN *BRASSICA OLERACEA* L. VAR. *ITALICA*, *CAPITATA* AND *BOTRYTIS*

Geetika Sirhindi¹, Ruqia Mushtaq^{*1,2}, Sarvajeet Singh Gill², Shruti Kaushik¹ and Neha Dogra¹

¹Plant Physiology Lab., Department of Botany, Punjabi University, Patiala 147002, India

²Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak - 124 001, India

[Corresponding author E-mail*: ruqiamushtaq92@gmail.com; 8146814305]

Received: 17-10-2018

Accepted: 10-11-2018

The present study focuses on the impact of Jasmonic acid and Methyl jasmonate (JA; Me-JA; 1 μ M, 1 nM and 1 pM) supplementation on osmo-protectants in the form of proline and glycine betaine in 10 day old seedlings of *Brassica oleracea* L. var. *italica*, *capitata* and *botrytis*. Results suggested that priming treatments of both JA and Me-JA enhanced the proline content in all the three varieties of *Brassica oleracea* L. in comparison to untreated control seedlings. However in case of glycine betaine, supplementation of JA and Me-JA raised the content only in var. *capitata* over control distilled water seedlings. Variety *italica* and var. *botrytis* followed the opposite trend and decrease in glycine betaine content was found by JAs application. These results indicated that JAs are potent enough to upsurge the osmoprotectants in *Brassica oleracea* L. seedlings, thus maintaining the process of osmoregulation, but at the same time it depends on dose of JAs used and variety as well.

Key words: *Brassica oleracea*, Jasmonic Acid, Methyl Jasmonate, Proline, Glycine betaine.

Plants produce osmoprotectants like glycine betaine and proline in order to maintain osmoregulation and stabilize macromolecules (Ahmad *et al.*, 2012 a, b and Ashraf and Foolad, 2007). Proline, constituting an energy source is known to be involved in activation of Krebs cycle and reconstruction of chlorophyll (Ramon *et al.*, 2003). Its ability to scavenge reactive oxygen species (ROS) protects the cell from the oxidative damage (Ahmad *et al.*, 2012 a, b and 2015 a, b). Apart from osmotic adjustment glycine betaine plays a role in stabilizing PSII complex, maintaining integrity of membrane, protecting the activity of Rubisco as well as detoxification of harmful ions (Ashraf and Foolad, 2007).

Jasmonates, found ubiquitously in higher plants is the youngest candidate of plant growth regulators and is known for the induction of wide array of developmental processes (Wasternack and Hause, 2013 and Engelberth *et al.*, 2001). JAs play a pivotal role as signalling molecule in plants (Wasternack and Hause, 2013, Wasternack, 2014 and Kamal, and Komatsu, 2016). The supplementation of JAs in minute amounts augment plant growth, gene expression and provide tolerance against various biotic stresses (Creelman and Mullet, 1995 and Cheong and Choi 2003). The present work was aimed to study the effect of exogenously applied two derivatives of

jasmonates viz. Jasmonic acid (JA) and methyl jasmonate (Me-JA) on proline and glycine betaine content in *Brassica oleracea* L. (var. *italica*, *capitata* and *botrytis*).

MATERIALS AND METHODS

Experimental set up: Certified seeds of three varieties of *B. oleracea* L. var. *italica*, *capitata*, and *botrytis* were procured from the IARI, Katrain, Himachal Pradesh, India. Seeds were surface sterilized by dipping in 0.01% $HgCl_2$ for 2 minutes followed by washing under free-flowing tap water. Pre-soaking treatments of 6 hours in distilled water and different concentrations (1 μ M, 1 nM and 1 pM) of jasmonic acid and methyl jasmonate were given to the seeds. The seeds were arranged as follows:

- Control
- 1 μ M JA/1 μ M Me-JA
- 1 nM JA/1 nM Me-JA and
- 1pM JA/1pM Me-JA.

Presoaked seeds were germinated in plant growth chamber in petriplates lined with What man's filter paper for 3 days under controlled laboratory conditions of 25°C temperature, photoperiod of 16 h Dark/Light period; PPFD of 200 μ mol

(photon $m^{-2}s^{-1}$) and 80% humidity in randomised block manner with three replicas each. After the emergence of plemule, seedlings were transferred on growth papers upto 10 days. After 10 days, the seedlings were sampled for the analysis of various parameters.

Estimation of Proline: Proline content was estimated by adopting the method of Bates *et al.* (1973). Absorbance was taken spectrophotometrically at 520 nm (Beckman 640 D, USA).

Estimation of Glycine Betaine: The content of glycine betaine was determined by following the method of Grieve and Grattan (1983). The OD was taken by spectrophotometer (Beckman 640 D, USA) at 365 nm.

Statistical analysis: All data were subjected to one-way analysis of variance (ANOVA) for scrutinizing interactions of each concentration of JA and Me-JA and expressed as the mean \pm standard error of three replicates. Tukey's test ($P<0.05$) was applied for the multiple comparisons using GraphPad Prism Version 7.

RESULTS AND DISCUSSION

In variety *italica* proline content was enhanced in its level by treatment of JA as well as Me-JA. It has been observed that JA in 1 μM and 1 nM treatment showed enhancement in free amino acid proline accumulation which was 32.00% and 42.00 %, respectively as compared to control distilled water seedlings ($0.33\pm0.01 \mu g g^{-1} FW$) (Table 1). The enhancement by Me-JA in proline content of variety *italica* was significantly higher than JA and the maximum increase by 598.00% was seen in seedlings grown from 1 μM treated seeds followed by 1 pM and 1 nM treatment which was 243.00% and 157.00% more than control distilled water seedlings (Table 1). In variety *capitata* JA and Me-JA again showed positive impact on proline content. Among JA treatments the highest proline accumulation was noted in 1 μM treated seedlings ($1.22\pm0.09 \mu g g^{-1} FW$) followed by 1 pM ($0.79\pm0.13 \mu g g^{-1} FW$) which was 192.25% and 88.73% over control distilled water seedlings ($0.42\pm0.01 \mu g g^{-1} FW$) (Table 1). Among Me-JA treatments, 1 pM has shown maximum proline content followed by 1 μM and 1 nM which was 171.83%, 147.18% and 97.18% over control distilled water seedlings (Table 1). In variety *botrytis* 1 μM and 1 pM JA supplemented seedlings showed increased proline content by

9.28% and 19.53% as compared to control distilled water seedlings ($1.72\pm0.02 \mu g g^{-1} FW$). On the other hand the exogenous application of Me-JA enhanced proline content in 1 pM concentration by 17.79% over control (Table 1). Our results are supported by Sirhindi *et al.*, (2016) and Ali *et al.*, (2007) who reported accumulation of proline by JA and Me-JA and in *Glycine max* and *Panax ginseng* bioreactor root suspension cultures respectively. The present results are also in accordance to Poonam *et al.*, (2013) who reported an increased content of proline in *Cajanus cajan* under copper stress after supplementation of JA at different concentrations and the reason might be that JA stimulates the enzymes responsible for proline biosynthesis. In addition to this proline is having antioxidant property and might be induced by JA to protect the cell from oxidative burst. A similar role of Me-JA in proline production has been discussed by Pazirandeh *et al.*, (2015) in barley genotypes.

In variety *italica* the exogenous application of JA and Me-JA was not found to be effective in glycine betaine accumulation as all the treatments of both JA and Me-JA decreased the glycine betaine content to a considerable level as compared to control untreated seedlings (Table 2). On the other hand both JA and Me-JA had dynamic impact on uplifting the accumulation of glycine betaine content in variety *capitata* seedlings. With the decrease in concentration of JA from 1 μM to 1 nM, glycine betaine content increased from $6.54\pm0.03 mg g^{-1} DW$ to $9.6\pm0.06 mg g^{-1} DW$ but decreased to $4.61\pm0.10 mg g^{-1} DW$ at 1 pM JA (Table 2). Among Me-JA treatments increase in concentration from 1 pM JA to 1 nM JA and 1 μM JA, increased glycine betaine content by 67.49%, 69.83% and 100.24% respectively was recorded over control distilled water seedlings ($2.70\pm0.08 mg g^{-1} DW$) (Table 2). In variety *botrytis* all the priming treatments of JA decreased glycine betaine content supplementation of Me-JA also reduced glycine betaine content except at 1 μM treatment where a petite increase (2.11%) in glycine betaine content was recorded over control unprimed seedlings (Table 2). Our results revealed that the three varieties behaved differently towards exogenous application of both JA and Me-JA. In variety *capitata* both JA and Me-JA enhanced glycine betaine content thus corroborating with the findings of Gao *et al.*, (2004) by upregulating the expression of betaine aldehyde dehydrogenase (BADH). In addition to this our results are also supported by Sirhindi *et*

Table 1: Showing the statistical analysis of JA and Me-JA on Proline Content in *B. oleracea* var. *italica*, *capitata* and *botrytis*. Values are means \pm SD of three independent replications (n = 3).

Proline Content ($\mu\text{g g}^{-1}$ FW)				
Sr. No.	Treatments	Var. <i>italica</i>	Var. <i>capitata</i>	Var. <i>botrytis</i>
1.	Control	0.33 \pm 0.015 ^{de}	0.42 \pm 0.010 ^f	1.72 \pm 0.023 ^c
2.	1 μM JA	0.44 \pm 0.090 ^{de}	1.22 \pm 0.090 ^b	1.88 \pm 0.035 ^b
3.	1 nM JA	0.48 \pm 0.006 ⁱ	0.40 \pm 0.010 ^{cd}	1.40 \pm 0.045 ^d
4.	1 pM JA	0.12 \pm 0.025 ^e	0.79 \pm 0.130 ^c	2.06 \pm 0.017 ^a
5.	1 μM Me-JA	2.33 \pm 0.091 ^a	1.04 \pm 0.020 ^b	1.18 \pm 0.037 ^e
6.	1 nM Me-JA	0.86 \pm 0.092 ^c	0.83 \pm 0.040 ^b	1.33 \pm 0.015 ^{de}
7.	1 pM Me-JA	1.14 \pm 0.035 ^b	1.14 \pm 0.020 ^a	2.03 \pm 0.069 ^a

* Different letters (a-f) within the column indicate statistically significant differences among the treatments, according to Tukey's test at (P < 0.05).

Table 2: : Showing the statistical analysis of JA and Me-JA on Glycine Betaine Content in *B. oleracea* var. *italica*, *capitata* and *botrytis*. Values are means \pm SD of three independent replications (n = 3).

Glycine Betaine Content (mg g^{-1} DW)				
Sr. No.	Treatments	Var. <i>italica</i>	Var. <i>capitata</i>	Var. <i>botrytis</i>
1.	Control	7.19 \pm 0.02 ^b	2.70 \pm 0.08 ^e	13.86 \pm 0.08 ^a
2.	1 μM JA	3.73 \pm 0.00 ^f	6.55 \pm 0.04 ^b	11.73 \pm 0.04 ^d
3.	1 nM JA	7.84 \pm 0.01 ^a	9.60 \pm 0.07 ^a	12.33 \pm 0.03 ^{cd}
4.	1 pM JA	3.16 \pm 0.00 ^g	4.62 \pm 0.11 ^d	12.63 \pm 0.02 ^c
5.	1 μM Me-JA	6.54 \pm 0.02 ^d	5.40 \pm 0.04 ^c	14.15 \pm 0.11 ^a
6.	1 nM Me-JA	5.90 \pm 0.00 ^e	4.58 \pm 0.04 ^{de}	10.85 \pm 0.11 ^e
7.	1 pM Me-JA	6.79 \pm 0.00 ^c	4.52 \pm 0.05 ^{de}	12.98 \pm 0.22 ^b

* Different letters (a-f) within the column indicate statistically significant differences among the treatments, according to Tukey's test at (P < 0.05).

al., (2016). However variety *italica* and variety *botrytis* followed the opposite trend and decrease in glycine betaine content was found by JAs application.

CONCLUSION

Jasmonates (JA and Me-JA) were supplemented to evaluate their impact on the accumulation of osmo-protectants in the form of proline and glycine betaine in *Brassica oleracea L.* var. *italica*, *capitata* and *botrytis*. Both JA and Me-JA priming was effective in enhancing the accumulation of proline in all the three varieties. However JA and Me-JA was able to augment the glycine betaine content only in variety *capitata*. Our study

supports the hypothesis that JAs do so by stimulating and increasing the expression of genes involved in proline and glycine betaine biosynthesis but concurrently it depends on the variety also. These results infer that JAs have much potential in enhancing the accumulation of osmo-protectants, which also possess antioxidant property in *B. oleracea L.* in an economical way and above all variety *capitata* has outperformed.

ACKNOWLEDGMENT

The authors would like to extend their sincere appreciation to the SERB-DST (DST No: SR/SO/PS-158/2012) and

Department of Botany, Punjabi University, Patiala.

REFERENCES

1. Ahmad, P., Hakeem, K. R., Kumar, A., Ashraf, M., Akram, N. A. (2012a). Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (*Brassica juncea* L.) African Journal of Biotechnology.11, 2694-2703.
2. Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., Gucel, S. (2015a). Role of *Trichoderma harzianum* in mitigating NaCl stress in Indian mustard (*Brassica juncea* L) through antioxidative defense system. Frontiers in plant science. 6: 868-872.
3. Ahmad, P., Ozturk, M. and Gucel, S. (2012b). Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L) plants. Fresenius Environmental Bulletin. 21, 2953-2961.
4. Ahmad, P., Sarwat, M., Bhat, N. A., Wani, M. R., Kazi, A. G., Tran, L. S. P. (2015b). Alleviation of cadmium toxicity in *Brassica juncea* L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE. 10:e0114571. doi: 10.1371/journal.pone. 0114571.
5. Ali, M. B., Yu, K. W., Hahn, E. J. and Paek, K. Y. (2006). Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant cell reports. 25(6): 613-620.
6. Ashraf, M. and Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59, 206-216.
7. Bates, L., Waldren, P. P., Teare, J. D. (1973). Rapid determination of free proline of water stress studies. Plant Soil. 39, 205-207. doi: 10.1016/j.dental.2010.07.006
8. Cheong, J. J. and Choi, Y. D. (2003). Methyl jasmonate as a vital substance in plants. Trends in Genetics.19,409-413.doi:10.1016/S0168-9525(03)00138-0
9. Creelman, R. A. and Mullet, J. E. (1995). Jasmonic acid distribution and action in plants, regulation during development and response to biotic and abiotic stresses. Proceedings of the National Acadamy of Sciences. U.S.A. 92, 4114-4119. doi: 10.1073/pnas.92.10.4114.
10. Engelberth, J., Koch, T., Schüler, G., Bachmann, N., Rechtenbach, J. and Boland, W. (2001). Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiology. 125: 369-377.
11. Gao, X. P., Wang, X. F., Lu, Y. F., Zhang, L. Y., Shen, Y. Y., Liang, Z. and Zhang, D. P. (2004). Jasmonic acid is involved in the water stress induced betaine accumulation in pear leaves. Plant Cell Environment. 27(4): 497-507.
12. Grieve, C. and Grattan, S. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 70, 303-307. doi: 10.1007/BF02374789
13. Kamal, A. H. and Komatsu, S. (2016). Jasmonic acid induced protein response to biophoton emissions and ooding stress in soybean. Journal of Proteomics. 133, 33-47.doi:10.1016/j.jprot.2015.12.004
14. Pazirandeh, M. S., Hasanoloo, T., Shahbazi M. and Moradi-payam, A. (2015). Effect of methyl jasmonate in alleviating adversities of water stress in barley genotypes. International Journal of Farming and Allied Science. 4(2):111-118.
15. Poonam, S., Kaur, H. and Geetika, S. (2013). Effect of jasmonic acid on photosynthetic pigments and stress markers in *Cajanus cajan* (L.) Millsp. seedlings under copper stress. American Journal of Plant Sciences. 4(04), p.817.
16. Ramon, O., Vazquez, E., Fernandez, M., Felipe, M. and Zornoza, P. (2003). Cadmium stress in white lupine: effects on nodule structure and functioning. Plant Physiology. 161,911-919.
17. Sirhindi, G., Mir, M. A., Abd-Allah, E. F., Ahmad, P. and Gucel, S. (2016). Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in *Glycine max* under nickel toxicity. Frontiers in plant science. 7, p.591.
18. Wasternack, C. (2014). Action of jasmonates in plant stress responses and development-applied aspects. Biotechnology Advances 32: 31-39.
19. Wasternack, C. and Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Annals of Botany. 111, 1021-1058.

Cite this paper as: Sirhindi, G., Mushtaq, R., Gill, S.S., Kaushiq,S. and Dogra, N.(2018) EFFECT OF JASMONATES ON OSMO-PROTECTANTS IN *BRASSICA OLERACEA* L. VAR. *ITALICA*, *CAPITATA* AND *BOTRYTIS*.Jou. Env. Bio-Sci.,vol 32(2): 305-308.