Synthesis and Solid-state Conformations of 6*S*,8a*R*/*S*-6-Alkyl-3,3-dimethyltetrahydrooxazolo[3,4-*a*]pyrazine-5,8-diones (*Pseudo* proline Diketopiperazines)

Anne Beauchard¹, Helen F. Dufton¹, Kere Odumah¹, Rhian H. Jaggers¹, Mary F. Mahon², Pauline J. Wood¹, Michael D. Threadgill^{1*}

¹Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK

²X-ray Crystallography Unit, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

(Dedicated to Prof. S.P. Singh on his 80th Birthday)

ABSTRACT Peptide-like self-immolative molecular clips are required for release of active drugs from prodrugs by endopeptidases, generating diketopiperazines (DKPs) as by-products. Two diastereomeric series of *cyclo*-L-aminoacyl-*R/S*-dimethyloxazolidine carboxylate DKPs, derived from L-Ala, L-Leu and L Val, were synthesised. The oxazolidines were constructed by acid-catalysed condensation of N-protected L-Aaa-L/D-SerOMe dipeptides with Me₂C(OMe)₂, providing the protected 2,2-dimethyloxazolidine-carboxylates (Dmo) dipeptides. Deprotection exposed the primary amines, which cyclised rapidly to give the desired DKPs. The conformations were studied by nuclear magnetic resonance in CDCl₃ solution and, for the L,*R* series, by X-ray crystallography. The L,*S* series had the DKP in a boat conformation with the oxazolidine in a half-chair; the L,*R* series had the DKP in a flattened conformation with the oxazolidine in an alternative half-chair. Early kinetic studies have shown that L,*R*-Dmo dipeptide amides cyclised more rapidly than L,*S*-diastereoisomers and that the rate ofcyclisation in the L,*R* series depends inversely on steric bulk at the α-carbon. *Cyclo*-L-Leu-*R*-Dmo was non-toxic toward human HT29 cells.

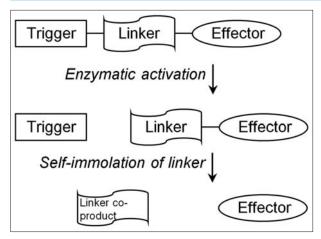
KEY WORDS Diketopiperazine, Conformation, Prodrug, Pseudoproline, 2,2-dimethyloxazolidine-carboxylates.

INTRODUCTION

As part of our continuing development of prodrug systems, [1-6] we have studied molecular clips which could act

as self-immolative linkers between the Trigger and Effector (Drug) in a tripartite prodrug system [Scheme 1].^[1,2] These self-immolative linkers are particularly required when the activating enzyme is an endopeptidase, a peptide-cleaving

ISSN (Print) : 0971-1627 ISSN (Online) : 2456-4311


*Corresponding author: Email: m.d.threadgill@bath.ac.uk

Published & Hosted by :

Journal Homepage :

www.connectjournals.com/ijhc

www.connectjournals.com

Scheme 1: Schematic representation of the release of drugs from a tripartite prodrug system. The trigger linker unit comprises the group which masks the pharmacophore of the drug (effector)

enzyme that can only hydrolyse amide bonds between amino-acids. In this case, it is essential that the selfimmolative linker resembles an amino-acid or short peptide sufficiently to be recognized and bound by the activating enzyme.^[7,8] In peptides with free N-terminal amines, the N-terminal amino acid pair can cyclise slowly to give a diketopiperazine (DKP), expelling the C-terminal remainder of the peptide as a leaving group. The rates of formation of the DKPs depend on the proportion of the dipeptide in the reacting cis conformation. Most peptide sequences adopt only the trans-conformation because it is energetically favorable. Peptide bonds to proline (Pro) are tertiary amides and the two conformers have approximately the same energy, leading to similar concentrations at equilibrium. Pseudoprolines (ΨPro) are proline analogues in which the γ-CH₂ group of the prolyl ring has been replaced by oxygen or sulfur atoms. [9] They have been reported to prevent peptide aggregation and self-association, thus improving the solvation and coupling kinetics in the assembly of peptides. [10,11] Most ΨPro have two methyl groups at the bridging methylene (2,2-dimethylthiazolidine-carboxylates [Dmt] and 2,2-dimethyl oxazolidine-carboxylates [Dmo]). Due to the presence of the gem-dimethyl unit, [12-16] these dipeptides are in (almost) exclusively the cis-amide conformation. This places the N-terminal primary amine appositely for nucleophilic attack at the YPro-carbonyl. This attack releases the amine-containing (model) drug and forms the corresponding DKPs. Previously, we have studied the rates of the expulsion of a model drug from a candidate series of molecular clips, the N-aminoacyl-2,2-dimethylthiazolidine-4-carboxamides (Aaa-Dmt). Structural studies[2] on the corresponding DKPs, 6-alkyl-3,3-dimethyltetrahydrothia zolo[3,4-a]pyrazine-5,8-diones, helped to rationalise the dependence of the relative rates of the cyclisation reaction on the bulk of the side chain of the N-terminal amino acid and on the relative stereochemical configuration of the dipeptide. Interestingly, the ring-closure is markedly faster with L-configuration at the N-terminal amino acid and S-configuration at the thiazolidine 4-C (corresponding to a D-amino-acid).[2] Aminoacyl-L-Dmt units are shown to be highly effective self-immolative molecular clips for incorporation into prodrug linkers designed for cleavage by endopeptidases but the thiazolidine ring has to be introduced early in the syntheses, causing many difficulties. [2] A solution to this problem could be the use of the oxygen analogues, the *N*-aminoacyl-2,2-dimethyloxazolidine-4-carboxamides (Aaa-Dmo) as this heterocycle could be introduced later in the synthesis. Before studying the rates of the expulsion of a model drug with these *pseudo*-dipeptides, the corresponding DKPs (6*S*,8a*R*/*S*-6-alkyl-3,3-dimethyltetrahydrooxazolo[3,4-a]pyrazine-5,8-diones) derived from L-Ala, L-Leu and L-Val have been synthesisedand characterized by nuclear magnetic resonance (NMR) and X-ray crystallography for structural studies.

RESULTS AND DISCUSSION

Chemical synthesis

The target DKPs containing the Dmo unit were synthesized by cyclisation of appropriate dipeptide methyl esters [Scheme 2]. Appropriate selection of the *N*-terminal protecting group is critical for this synthetic sequence, as the 2,2-dimethyl oxazolidine unit is constructed under acidic conditions but is notoriously sensitive to acid, and the *C*-terminal methyl ester would be cleaved by the aqueous base. *N*-Cbz and *N*-Alloc satisfy the criteria for suitable protecting groups in the synthesis of the dipeptides and hence the DKPs.

In the first route, Cbz-L-AlaOH 1a and Cbz-L-LeuOH 1b were converted to their pentafluorophenyl active esters 2a,b in the usual way with dicyclohexylcarbodiimide. These were coupled with the methyl ester of D-serine to provide the protected dipeptides 3a,b. The oxazolidine ring was then constructed by condensation with 2,2-dimethoxypropane, [16] catalysed by toluenesulfonic acid, providing the protected Dmo dipeptides 4aR and 4bR in moderate yields. Deprotection of Cbz by catalytic hydrogenation gave the free base which cyclised spontaneously to afford the required DKPs5aR and 5bR in very good yield.

In the second route, Alloc-protected L-aminoacids (L-Ala, L-Val, L-Leu) **6a-c** were coupled using 1-hydroxybenzotriazole (HOBt)/N.N'dicyclohexylcarbodiimide (DCC) method with the methyl ester of D-serine to provide the protected dipeptides 7a-cR and with the methyl ester of L-serine to provide the protected dipeptides 7a-cS. The oxazolidine ring was then constructed by condensation with 2,2-dimethoxypropane in boiling toluene, catalysed by toluenesulfonic acid, providing the protected Dmo dipeptides 8a-cR and 8a-cS in moderate yields. Exploring methods of removal of the N-Alloc protection, treatment with tetrakis(triphenylphosphine) palladium(0) and 1,4-diazabicyclo[2.2.2]octane (DABCO) gave the desired DKPs5a-cR and 5a-cS in 20 min in moderate yields. Replacement of the base by Me₂NSiMe₃ gave the DKPs in 10 min with markedly improved yields. In each case, the intermediate deprotected dipeptide methyl ester was never detected, as it cyclised to the DKP too rapidly.

Scheme 2: Synthesis of tetrahydrooxazolo[3,4-a]pyrazine-5,8-diones 5a,b,c R and S. Reagents: (i) N,N'-dicyclohexylcarbodiimide (DCC), C₆F₅OH, ethyl acetate (EtOAc), (ii) D-SerOMe.HCl, Et₃N, CH₂Cl₂, 75–77%, (iii), Me₂C(OMe),, 4-methylbenzenesulfonic acid hydrate, 38%, (iv) H₂, Pd/C, EtOAc, 37–100%; v, L-SerOMe.HCl or D-SerOMe. HCl, DCC, 1-hydroxybenzotriazole, Et₃N, CH₂Cl₂, (vi) Pd(PPh₃)₄, Me₂NSiMe₃, CH₂Cl₂, H₂O, 40–100% or Pd(PPh₃)₄, 1,4-diazabicyclo[2.2.2]octane, CH₂Cl₂, 54%. R and S in compound numbers refer to the configurations of the Ser unit of 3,7, of 4-C of the oxazolidinone of 8 or of 8a-C of 5. Structures of analogous 6S,8aR/S-6-alkyl-3,3-dimethyltetrahydrothiazolo[3,4-a] pyrazine-5,8-diones reported previously^[2]

Conformational studies

L,S-Diastereomeric series - NMR studies

In the L,S-diastereomeric series, neither *cyclo*-L-Ala-S-Dmo **5a**S nor *cyclo*-L-Leu-S-Dmo **5b**S formed crystals of a quality suitable for crystallography and *cyclo*-L-Val-S-Dmo **5c**S was an oil. This contrasts with the corresponding DKPs derived from *R*-5,5-dimethylthiazoline-4-carboxylic acid (*R*-Dmt), where *cyclo*-L-Ala-*R*-Dmt **9a**R and *cyclo*-L-Val-*R*-Dmt **9c**R had formed excellent crystals for crystallographic studies;^[2] in these Dmt derivatives, *R* configuration corresponds to *S* configuration in the Dmo compounds, due to the Cahn, Ingold, Prelog conventions. However, NOESY spectroscopy and examination of the ¹H- ¹H NMR coupling constants allowed some inferences to be made about their conformation in solution.

The NOESY spectrum of **5a**S showed NOE correlation between the downfield methyl singlet (δ 1.56) and the 6-H (δ 4.08); thus this downfield singlet signal is due to the methyl on the lower (α) face of the molecule [**Figure 1**]. NOE correlation was also seen between the 1-H triplet (δ 4.02) and the α -face methyl singlet at δ 1.56; thus the signal at δ 4.02 is due to the 1-H on the α -face. Other NOE correlations were seen between the 6-H signal (δ 4.08) and the multiplet at δ 4.34, which comprises the signals for 8a-H and 1_{β} -H. As this 1-H is on the β -face, the correlation must be between 8a-H and 6-H, and they are shown to be 1,4-diaxial and *cis*, an arrangement only available in a boat conformation. Similar observations were also made for **5bS** and **5cS**. Interestingly, Karle also reported a boat conformation for the DKP ring in *cyclo*-L-Leu-L-Pro in the crystalline state. [17]

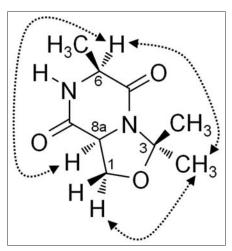


Figure 1: Selected NOE correlations for protons on the α -face of cyclo-L-Ala-S-2,2-dimethyloxazolidine-carboxylates 5aS

The boat conformation of the DKP ring was confirmed by the presence of a five-bond coupling ${}^5J=1.2$ Hz for ${\bf 5aS}$ and ${\bf 5bS}$ and ${}^5J=1.5$ Hz for ${\bf 5cS}$ between the axial 8a-H and the axial 6-H. Therefore, the amino acid side chains (CH₃ for ${\bf 5aS}$, CHCH₂Me₂ for ${\bf 5bS}$, and CHMe₂ for ${\bf 5cS}$) are in *pseudo*-equatorial positions and are remote from the geminal dimethyl unit at 6-C. As is the case for the Dmt analog, the oxazolidine ring is in a half-chair conformation, with a *trans*-diaxial coupling between the axial 8a-H and the ${\bf 1}_{\beta}$ -H proton with ${}^3J=12.1$ Hz for ${\bf 5aS}$ (the corresponding coupling in *cyclo*-L-Ala-*R*-Dmt is ${}^3J=10.2$ Hz). Unfortunately,

the signals for 1_a-H and 8a-H overlapped, precluding measurement of the coupling constant ^{3}J between them. Similar couplings were observed for 5bS and for 5cS with $^{3}J = 11.7$ Hz (the corresponding coupling constant in cyclo-L-Val-R-Dmt **9cR** is also ${}^{3}J = 11.7$ Hz). 8a-H is on the α -face; thus, the only half-chair consistent with the large vicinal trans-diaxial coupling constants between 1-H_B and 8a-H is the one with (3-C)-(4-N)-(8a-C)-(1-C) in one plane and 2-O being the atom out-of-plane [Figure 2a]. These conformations are very similar to those found from the crystal structure of the *R*-Dmt analogues.^[2]

Some deductions could also be made about the conformations of the side chains at the 6-position in **5bS** and 5cS. First, the chemical shift of the 6-H depended on the size of the side chains, with increasing local steric bulk (Me<CH₂CHMe₂<CHMe₂) moving this resonance upfield (δ 4.08 for **5aS**, δ 3.98 for **5bS**, and δ 3.90 for **5aS**). Second, in cyclo-L-Val-S-Dmo 5cS, an NOE correlation was observed between the signal for the pseudo-axial 3_g-Me $(\delta 1.63)$ and one of the methyl groups of the 6-isopropy unit $(\delta 0.91)$; the couplings to 6-H were also unusually small (in comparison with those in **5aS** and **5bS**), with ${}^{3}J = 1.5 \text{ Hz}$ for the transannular coupling to 8a-H (vide supra) and $^{3}J =$ 2.3 Hz for the coupling with 2'-H. Taken together, these data point to the conformation shown in Figure 2b for 5cS, with the pro-R side chain methyl (δ 0.91) located over the DKP ring close to the shielding cone of the 5-carbonyl.

L,RDiastereomeric series - crystallographic studies

Crystallographic quality crystals of cyclo-L-Ala-R-Dmo 5aR, cyclo-L-Leu-R-Dmo 5bR, and cyclo-L-Val-R-Dmo

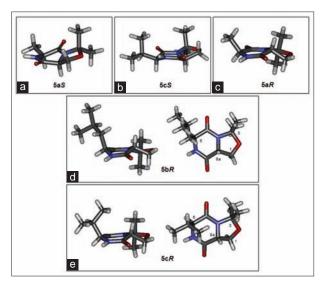


Figure 2: (a) MM2-minimized structure of cyclo-L-Ala-S-2,2-dimethyloxazolidine-carboxylates (Dmo) 5aS. (b) Solution conformation of cyclo-L-Val-S-Dmo 5cS deduced from nuclear magnetic resonance studies. (c) X-ray crystal structure, showing solid-state conformation of cyclo-L-Ala-R-Dmo 5aR. (d) X-ray crystal structure, showing solidstate conformation of cyclo-L-Leu-R-Dmo 5bR. (e) X-ray crystal structure, showing solid-state conformation of cyclo-L-Val-R-Dmo 5cR. In d and e, the upper "side" views show the conformations around the diketopiperazines ring, whereas the lower "top" views show the conformations about the 6-C side chain bond for 5bR and 5cR

5cR were grown from ethyl acetate (EtOAc)/petroleum ether and the X-ray crystal structures were determined. The Dmt analogues 9bS and 9cS [Scheme 2] had failed to provide crystals of suitable quality. [2] Figure 3 shows the intermolecular hydrogen-bonding (H-bonding) pattern evident in the crystals. For cyclo-L-Ala-R-Dmo 5aR and cyclo-L-Val-R-Dmo 5cR, the intermolecular H-bonding forms a ribbon through the crystal, with the NH being H-bonded to the secondary amide carbonyl of the adjacent molecule. The tertiary amide carbonyl (from the dimethyloxaproline unit) does not participate in H-bonding. The intermolecular H-bonding motif in cyclo-L-Leu-R-Dmo **5bR** is different from that in the other crystals, in that the H-bonding pairs are formed with the N-H and the tertiary amide carbonyl of the adjacent molecule. In that case, the secondary amide carbonyl does not participate in H-bonding.

Within an individual molecule of cyclo-L-Ala-R-Dmo **5aR**, the DKP ring is in a flattened conformation, with the oxazolidine in a half-chair. This ring conformation places the geminal methyl groups in equatorial and axial positions, and the 6-methyl occupies a sterically open region of space [Figure 2c]; notably, this 6-methyl group is remote in space from the geminal dimethyl unit. The half-chair is different from that seen in the diastereoisomer 5aS, in that

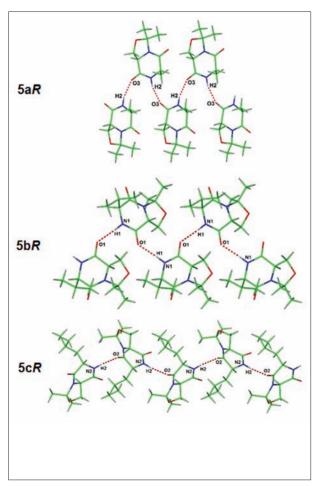


Figure 3: Intermolecular hydrogen-bonding patterns in crystals of cyclo-L-Ala-R-2,2-dimethyloxazolidinecarboxylates (Dmo) 5aR,cyclo-L-Leu-R-Dmo 5bR, and cyclo-L-Val-R-Dmo 5cR

(2-O)-(3-C)-(4-N)-(8a-C) of **5aR** are in one plane with 1-C being the atom out-of-plane folded away from 8a-H.

In *cyclo*-L-Leu-*R*-Dmo **5b***R*, as the bulk of the side chain at 6-C is increased, the DKP ring becomes a flattened boat, placing the 6-isobutyl substituent in a *pseudo*-axial position. The same half-chair for the oxazolidine is observed for **5b***R* as for the Ala analogue **5a***R*. The same flattened boat and half-chair were shown by NMR for the Dmt analogue **9b***S*. The (6-C)—(2'-C) bond is in the expected staggered conformation, with the bulky isopropyl group pointing away from the DKP ring [**Figure 2d**].

In the structure of *cyclo*-L-Val-*R*-Dmt**5c***R*, the isopropyl group at 6-C is more sterically bulky than the isobutyl unit of **5b***R* in the critical region close to the DKP ring. However, the DKP ring moves toward planarity, and its conformation is very similar to that of the Ala analogue 5aR. The same halfchair, with the 1-C out-of-plane, is preserved [Figure 2e]. The overall conformation resembles that suggested for its Dmt analogue 9cS by NMR studies. [2] It is likely that steric repulsion between the 38-Me and the isopropyl group of **5cR** drives this flattening of the DKP ring, particularly as the conformation of the (6-C)—(2'-C) bond is gauche staggered, with one of the methyl groups of the isopropyl lying over the DKP ring, i.e. inclined toward the 3₈-Me. This conformation of the side chain contrasts with that deduced by Young et al.[18] for the analogous cyclo-L-Pro-D-Val from NMR data.

L,R-Diastereomeric series - NMR studies

The conformations of the L,R series solution in $CDCl_3$ were studied by NOESY spectroscopy and examination of 1H - 1H NMR coupling constants. Notably, whereas the 3-Me signals had been well separated in the cyclo-L-Aaa-S-Dmo series (Δ_δ 0.06 ppm. for **5aS**, **5bS**, and **5cS**), the corresponding signals for the members of the cyclo-L-Aaa-R-Dmo series were almost coincident, which precluded many of the planned NOE measurements. Other examples of overlapping signals were also encountered.

In the ¹H NMR spectrum of 5aR, the signals for 1_{α} -H, 1_{β} -H, and 8a-H all formed triplets with J=8.2 Hz; thus, the geminal ²J between 1_{α} -H and 1_{β} -H is unusually small. The HSQC spectrum allowed assignment of the triplet at δ 3.95 as arising from 1_{α} -H or 1_{β} -H but the configurational identity could not be confirmed. The other 1-H and 8a-H formed triplets at δ 4.33 and δ 4.36, but the individual assignments could not be made. In the corresponding spectra of 5bR and 5cR, the same sets of three triplets were observed for the two 1-H protons and 8a-H; These consistent observations suggest that the conformations of the half-chair oxazolidine rings of these three analogues are almost identical, as seen in the solid-state structures.

The coupling constants between 6-H and the adjacent 7-H (N-H) in this diastereomeric series are large, with ${}^{3}J = 4.3$ Hz for $\mathbf{5aR}$, ${}^{3}J = 6.6$ Hz for $\mathbf{5bR}$, and ${}^{3}J = 4.4$ Hz for $\mathbf{5cR}$. In $\mathbf{5aR}$ and $\mathbf{5cR}$, these values are inconsistent with boat conformations of the DKP rings but indicate that the DKPs in this series are likely to be flattened markedly from the boat form. The much larger coupling constant in $\mathbf{5bR}$ shows

that the DKP ring is more boat-like in this molecule. As expected, 8-aH did not couple with 6-H in any compound in this series, since these protons are now trans and no longer 1,4-diaxial. These observations suggest that the solution conformations of the rings resemble closely those observed in the solid-state. Interestingly, Cavelier et al.[19] found only one type of pucker of the five-membered rings in analogous bicyclic DKPs. In 2,2-dimethyltetrahydrosilazolo[3,4-a] (cvclo-Gly-(y-(dimethylsila)Pro) pyrazine-5,8-dione and tetrahydrothiazolo[3,4-a]pyrazine-5,8-dione (cyclo-Gly- $(\gamma$ -thia)Pro), the 1-C is the ring-atom which is outof-plane. In the present work, we found this 1-C to be the atom out-of-plane in the 5aR, 5bR, and 5cR series but 5aS, **5bS**, and **5cS** adopted a different ring-pucker with the 2-O out-of-plane.

Some inferences could also be drawn about the conformations of the 6-side-chains in solution. In 5bR, the coupling between 6-H and the 2'-pro-S-H is $^{3}J = 9.0$ Hz, whereas the coupling between 6-H and the 2'-pro-R-H is approximately zero. Applying the Karplus relationship shows that these coupling constants are only consistent with a conformation around the (6-C)—(2'-C) bond similar to that in the crystal but very slightly twisted to place the 2'-pro-R-H at ca. 90° dihedral angle to 6-H. In 5cR, the observation of a $^{3}J = 5.8$ Hz coupling between 6-H and 2'-H shows that these protons cannot be antiperiplanar about the (6-C)—(2'-C) bond. This contrasts with the deduction by Young et al.[18] for cyclo-L-Pro-D-Val from NMR data suggesting that these protons are antiperiplanar in this latter DKP. The 2'-methyl group signals resonate as $^{3}J = 6.6 \text{ Hz}$ doublets at δ 0.97 and δ 1.01 and were distinguished in the NOESY spectrum. The downfield signals showed an NOE to the 6-H signal at δ 3.65 and the upfield signal at δ 0.97 showed an NOE to the multiplet at δ 4.3 containing the 8a-H and one 1-H. Since both 1-H protons are too remote from either 2'-Me for an NOE interaction to be evident, this NOE must be between 8a-H and the methyl signal. These NOE observations are only consistent with a conformation of the side chain in solution which is very similar to that in the crystal, with the pro-S methyl over the DKP ring and close to 8a-H. This conformation places this *pro-S* methyl remote from 6-H. However, it also places the pro-R 2'-Me close to 6-H but remote from 8a-H. The signals are, therefore, assigned as δ 0.97 (pro-S 2'-Me) and δ 1.01 (pro-R 2'-Me).

Cyclisation studies

The rates of ring-closure of the Dmt-containing dipeptides are independent of *pseudo*-proline *cis-trans* interconversion but depend on the relative configurations of the two stereocentres, with the L,S-Dmt dipeptide amides cyclising much more rapidly than their L,R diastereoisomers. In view of the similarity of the conformation in the present Dmo series, it is likely that similar effects prevail during the cyclisation of L,R/S-Dmo dipeptide amides with the L,R-Dmo dipeptide amides cyclising much more rapidly than their L,S-diastereoisomers. To confirm this hypothesis, Alloc-Val-R/S-Dmo dipeptide amides 12R and 12S were synthesised and the free-base dipeptide amides 13R and 13S were revealed and tested for the release of a model drug [Scheme 3].

Scheme 3: Synthesis of diastereomeric Alloc dipeptide amides 12R and 12S carrying the model drug, deprotection of 12R and 12S and spontaneous cyclisation of dipeptides 13R and 13S, forming diketopiperazines 5R and 5S and amine 14. Reagents: (i) NaOH, H₂O, MeOH, (ii) N,N'-dicyclohexylcarbodiimide, C₆F₅OH, ethyl acetate, (iii) 4-ClPh(CH₂)₂NH₂.HCl, Et₃N,CH₂Cl₂, (iv) Pd(PPh₃)₄, Me₂NSiMe₃, CH₂Cl₂, water; CDCl₃, (v) spontaneous

2-(4-Chlorophenyl)ethylamine 14 was selected as a model for amine-containing drugs, where the amines are key features of the pharmacophores. Mild hydrolysis of the intermediate dipeptide esters 8R and 8S exposed the carboxylic acids 10, which were converted to their pentafluorophenyl active esters 11 for coupling with 14. The Alloc protecting groups were removed rapidly under neutral conditions ((Ph,P),Pd with either Me₃SiNMe₃ or DABCO) to provide the dipeptide amides 12, which are models of the [dipeptide molecular clip]-[drug] for use in measuring rates of cyclisation to 5 and expulsion of 14. Experiments using HPLC to monitor the rates of these cyclisations/drug expulsions were uninformative, due to difficulties caused by the presence of the Pd, and only served to confirm cyclisation was rapid. However, the reactions were studied very effectively by generating the dipeptide amides 13R and 13S in NMR tubes and following the rates of cyclisation by ¹H NMR spectroscopy; examples of the graphs of the cyclisation/release reactions in CDCl, are shown in Figure 4. Although the conditions are non-physiological and non-aqueous, conclusions can be drawn about the relative rates of cyclisation/release of 14. The dipeptide amide 13cR containing S-Dmo cyclised faster (t_{1,2}ca. 40 h) than did **13cS** containing R-Dmo (t₁₆>12 d). Other diastereomeric pairs of dipeptide amides showed similar differences in rates of cyclisation/expulsion of 14 (data not shown). The Leu dipeptide amide 13bR also appeared to cyclise slightly slower than the corresponding Val dipeptide amide 13cR.

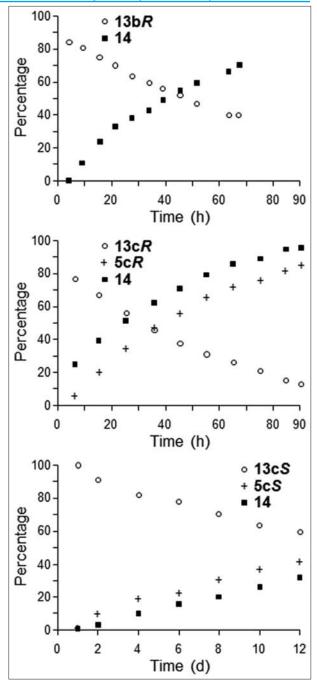


Figure 4: Graphs of preliminary study on cyclisation of diastereomeric dipeptide amides 13cR and 13cS and homologue 13bR. Samples were dissolved in CDCl₃ (ca. 40 mM), and the solutions were kept at 20°C; ¹H nuclear magnetic resonance spectra were recorded at the intervals shown, and the amounts of the dipeptides remaining and the product diketopiperazines and 14 were estimated by integration of appropriate well-resolved distinct peaks

These observations are consistent with the effects seen in the Dmt series (the cyclisation of which in water was studied by HPLC). [2] Although the Dmo dipeptide amides appear, at first sight, to react slower than their Dmt analogues, this is probably an artifact of the different polarities of the solvents used. Further experiments will be needed to translate these preliminary findings into the aqueous environment.

Toxicity study

When designing prodrugs, it is important to ensure that any fragments released from the self-immolation of the linker are essentially non-toxic. The cytotoxicity of *cyclo-*L-Leu-*R-*Dmo **5b***R* was determined using the HT29 human colon carcinoma tumour cell line as a surrogate for toxicity toward normal human cells. Cell survival was assessed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2*H*-tetrazolium) (MTS) method, after incubation of the compound with the cells for 3 d. Compound **5b***R* was nontoxic to the cells up to the maximum concentration tested, 0.5 mM, pointing to the likely safety of this DKP derived from an unnatural amino acid.

EXPERIMENTAL SECTION

General

¹H NMR spectra were recorded on Varian GX270 or EX400 spectrometers. Infrared spectra were recorded on a Perkin-Elmer 782 spectrometer as KBr discs, unless otherwise stated. Mass spectra were obtained using high-resolution electrospray ionisation in the positive ion mode, unless otherwise stated. The chromatographic stationary phase was silica gel. Solutions in organic solvents were dried with magnesium sulfate. Solvents were evaporated under reduced pressure. The aqueous sodium hydrogen carbonate and brine were saturated. Experiments were conducted at ambient temperature, unless otherwise stated. Melting points were measured with a Thermo Galen Kofler block.

N-(N-Phenylmethoxycarbonyl-L-alanyl)-D-serine methyl ester (3aR)

Cbz-L-AlaOPFP **2a** (823 mg, 2.1 mmol) was stirred with D-SerOMe.HCl (310 mg, 2.0 mmol) and Et₃N (606 mg, 6.0 mmol) in CH₂Cl₂ (20 mL) for 16 h. The solution was washed with water, aq. Na₂CO₃ (1.0 M) and aq. HCl (1.0 M). Evaporation afforded **3aR** (497 mg, 77%) as a colorless gum: ¹H NMR (CDCl₃): δ 1.40 (3 H, d, J = 7.0 Hz, Ala Me), 3.76 (3 H, s, OMe), 3.94 (2 H, m, Ser β-H₂), 4.26 (1 H, qn, J = 6.7 Hz, Ala α-H), 4.60 (1 H, m, Ser α-H), 5.08 (1 H, d, J = 14 Hz, PhCH), 5.09 (1 H, d, J = 14 Hz, PhCH), 5.34 (1 H, d, J = 6.3 Hz, Ala NH), 7.03 (1 H, d, J = 7.0 Hz, Ser NH).

(*N*-(*N*-Phenylmethoxycarbonyl)-*D*-serine methyl ester(3bR)

Cbz-L-LeuOPFP **2b** (980 mg, 2.2 mmol) was stirred with D-SerOMe.HCl (330 mg, 2.1 mmol) and Et₃N (612 mg, 6.0 mmol) in CH₂Cl₂ (20 mL) for 16 h. The mixture was washed with water, aq. Na₂CO₃ (1.0 M) and aq. HCl (1.0 M). Evaporation afforded **3bR** (580 mg, 75%) as a white solid: mp 100–103°C. ¹H NMR (CDCl₃): δ 0.93 (6 H, d, J = 6.3 Hz, Leu Me₂) 1.55 (1 H, m, Leu γ-H), 1.68 (2 H, m, Leu β-H₂), 3.7 (1 H, t, J = 4.7 Hz, OH), 3.80 (3 H, s, OMe), 3.90 (2 H, m, Ser β-H₂), 4.21 (1 H, m, Leu α-H), 4.62 (1 H, m, Ser α-H), 5.1 (2 H, s, PhCH₂), 5.20 (1 H, d, J = 6.3 Hz, Leu NH), 7.01 (1 H, d, J = 7.8 Hz, Ser NH), 7.33 (5 H, m, Ph-H_ε).

Methyl N-(N-phenylmethoxycarbonyl-L-alanyl)-R-2,2-dimethyl-1,3-oxazolidine-4-carboxylate(4aR)

Cbz-L-Ala-D-SerOMe **3aR** (492 mg, 1.35 mmol) was heated with 2,2-dimethoxypropane (4.0 mL) and 4-methylbenzenesulfonic acid hydrate (TsOH) (28 mg) in CH_2Cl_2 (13.5 mL) under reflux for 16 h. The solution was washed with aq. NaHCO₃ (5%) and water. Evaporation and chromatography (EtOAc) gave **4aR** (191 mg, 38%) as a colourless gum: ¹H NMR (CDCl₃): δ 1.30 (3 H, d, J = 6.7 Hz, Ala Me), 1.54 (3 H, s, oxazolidine 2-Me), 1.65 (3 H, s, oxazolidine 2-Me), 3.80 (3 H, s, OMe), 4.09 (2 H, m, Ala α -H and oxazolidine 5-H), 4.16 (1 H, d, J = 9.4 Hz, oxazolidine 5-H), 5.05 (1 H, d, J = 12.5 Hz, PhCH), 5.10 (1 H, d, J = 12.5 Hz, PhCH), 5.12 (1 H, dd, J = 9.4, 2 Hz, oxazolidine 4-H), 5.27 (1 H, d, J = 8.2 Hz, Ala NH), 7.35 (5 H, m, Ph-H_s).

Methyl N-(N-phenylmethoxycarbonyl-L-leucyl)-R-2,2-dimethyl-1,3-oxazolidine-4-carboxylate(4bR)

Cbz-L-Leu-D-SerOMe **3bR** (570 mg, 1.6 mmol) was heated with 2,2-dimethoxypropane (10 mL) and TsOH (31 mg) in CH₂Cl₂(10 mL) under reflux for 16 h. The solution was washed with aq. NaHCO₃(5%) and water. Evaporation and chromatography (EtOAc) gave **4bR** (191 mg, 38%) as pale yellow crystals: mp 77–79°C; ¹H NMR (CDCl₃): δ 0.82 (3 H, d, J = 6.3 Hz, Leu Me), 0.89 (3 H, d, J = 6.7 Hz, Leu Me), 0.9-1.4 (3 H, m, Leu β,β,γ-H₃), 1.53 (3 H, s, oxazolidine 2-Me), 1.66 (3 H, s, oxazolidine 2-Me), 3.80 (3 H, OMe), 4.10 (1 H, m, Leu α-H), 4.15 (1 H, dd, J = 6.3, 3.1 Hz, oxazolidine 4-H), 4.17 (1 H, m, oxazolidine 4-H), 5.07-5.12 (3 H, m, PhCH₂ and oxazolidine 4-H), 5.15 (1 H, d, J = 9.0 Hz, Leu NH), 7.32 (5 H, m, Ph-H₅).

6S,8aR-3,3,6-Trimethyltetrahydrooxazolo[3,4-a]pyrazine-5,8-dione(5aR) Method A

Compound **4a***R* (191 mg, 520 µmol) was stirred vigorously under hydrogen with palladium on charcoal (10%, 100 mg) in MeOH (15 mL) for 16 h. Filtration (Celite®), chromatography (EtOAc/hexane 1:1) and recrystallisation (EtOAc/hexane) gave **5a***R* (80 mg, 89%) as white needles: mp 151–153°C; ¹H NMR (CDCl₃) δ 1.43 (3 H, d, J = 7.1 Hz, 6-Me), 1.61 (3 H, s, 3-Me), 1.62 (3 H, s, 3-Me), 3.95 (1 H, qd, J = 7.0, 4.3 Hz, 6-H), 3.95 (1 H, t, J = 8.2 Hz, 1-H), 4.33 (1 H, t, J = 8.2 Hz, 1-H or 8a-H), 4.36 (1 H, t, J = 8.2 Hz, 8a-H or 1-H), 6.60 (1 H, s, 7-H); ¹³C NMR (CDCl₃) (HMBC/HSQC) δ 19.63 (6-Me), 23.41 (3-Me), 25.45 (3-Me), 53.94 (6-C), 55.70 (8a-C), 96.13 (3-C), 164.65 (5-C), 167.50 (8-C); HRESIMS m/z 221.0898 [M + Na]+ (C₀H₁₄N₂NaO₃ requires 221.0902).

6S,8aR-3,3,6-Trimethyltetrahydrooxazolo[3,4-a]pyrazine-5,8-dione(5aR) Method B

Alloc-L-Ala-R-DmoOMe 8aR (314 mg, 1.0 mmol) was stirred with Pd(PPh₃)₄ (60 mg, 50 mmol) and Me₃SiNMe₂ (354 mg, 3.0 mmol) in CH₂Cl₂(5.0 mL) for 10 min. Water (1.0 mL) was added. After 10 min, the reaction was quenched with aq. NaHCO₃ (5%) and the mixture was extracted twice with CH₂Cl₂. Drying, evaporation and chromatography (hexane/EtOAc 1:1) gave 5aR (80 mg, 40%), with properties as above.

6S,8aR-3,3,6-Trimethyltetrahydrooxazolo[3,4-a]pyrazine-5,8-dione(5aR) Method C

Alloc-L-Ala-R-DmoOMe **8aR** (314 mg, 1.0 mmol) was stirred with Pd(PPh₃)₄ (120 mg, 100 mmol) and DABCO (560 mg, 5.0 mmol) in CH₂Cl₂ (5.0 mL) for 20 min. The reaction was quenched with aq. NaHCO₃ (5%) and the mixture was extracted twice with CH₂Cl₂. Drying, evaporation and chromatography (hexane/EtOAc 1:1) gave **5aR** (108 mg, 54%), with properties as above.

6S,8aS-3,3,6-Trimethyltetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5aS) Method A

Alloc-L-Ala-*S*-DmoOMe **8aS** was treated with Pd(PPh₃)₄ and Me₃SiNMe₂, as for the synthesis of **5aR** (Method B), to give **5aS** (37%) as white crystals: mp 120–122°C. ¹H-NMR (CDCl₃) δ 1.43 (3 H, d, J = 7.0 Hz, 6-Me), 1.56 (3 H, s, 3 -Me), 1.62 (3 H, s, 3 -Me), 4.02 (1 H, t, J = 12.1 Hz, 1 -H), 4.08 (1 H, qd, J = 7.0, 1.2 Hz, 6-H), 4.32 (1 H, dd, J = 12.1, 7.0 Hz, 1 -H), 4.34 (1 H, ddd, J = 12.1, 7.0, 1.1 Hz, 8a-H), 6.80 (1 H, br, 7-H); ¹³C-NMR (HMBC/HMQC) δ 15.28 (6-Me), 23.50 (3 -Me), 25.30 (3 -Me), 51.43 (6-C), 57.34 (8a-C), 65.11 (1-C), 95.88 (3-C), 164.35 (5-C), 168.64 (8-C); HRESIMS m/z 197.0937 [M - H] (C₉H₁₃N₂O₃ requires 197.0932).

6S,8aS-3,3,6-Trimethyltetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5aS) Method B

Alloc-L-Ala-S-DmoOMe **8a**S was treated with $Pd(PPh_3)_4$ and DABCO, as for the synthesis of **5a**R (Method C), to give **5a**S (64%), with properties as above.

6S,8aR-3,3-Dimethyl-6-(2-methylpropyl) tetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5bR) Method A

Compound **4bR** was treated with hydrogen, as for the synthesis of **5aR** (method A), to give **5bR** (97%) as white crystals: mp 130–132°C. ¹H NMR (CDCl₃) δ 0.91 (3 H, d, J = 6.6 Hz, HC-C H_3), 0.98 (3 H, d, J = 6.6 Hz, HC-C H_3), 1.60 (3 H, s, 3-Me), 1.61 (3 H, s, 3-Me), 1.63 (2 H, m, C H_2 CHMe₂), 1.72 (1 H, br nonet, J = 6.6 Hz, CHMe₂), 3.84 (1 H, dd, J = 9.0, 6.6 Hz, 6-H), 3.95 (1 H, br t, J = 8.0 Hz, 1-H), 4.28 (1 H, br t, J = 8.0 Hz, 1-H or 8a-H), 4.31 (1 H, br t, J = 8.0 Hz, 8a-H or 1-H), 7.25 (1 H, s, 7-H); 13 C NMR (CDCl₃) (HMBC/HSQC) δ 21.31 (HC-C H_3), 22.93 (HC-C H_3), 23.93 (3-Me), 24.45 (IMe₂), 25.40 (3-Me), 42.03 (IMe₂CHMe₂), 55.80 (8a-C), 56.55 (6-C), 65.63 (1-C), 96.05 (3-C), 164.57 (5-C), 167.87 (8-C); HRESIMS: 263.1371 [M + Na]⁺ (IC₁₂H₂₀N₂NaO₃requires 263.1371), 241.1552 [M + H]⁺ (IC₁₂H₂₁N₂O₃requires 241.1552).

6S,8aR-3,3-Dimethyl-6-(2-methylpropyl) tetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5bR) Method B

Alloc-L-Leu-R-DmoOMe 8bR was treated with $Pd(PPh_3)_4$ and Me_3SiNMe_2 , as for the synthesis of 5aR (method B), to give 5bR (quant.), with properties as above.

6S,8aS-3,3-Dimethyl-6-(2-methylpropyl) tetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5bS)

Alloc-L-Leu-S-DmoOMe **8bS** was treated with Pd(PPh₃)₄ and Me₃SiNMe₂, as for the synthesis of **5aR** (Method B), to give **5bS** (43%) as white crystals: mp 128–130°C. ¹H NMR (CDCl₃) δ 0.93 (3 H, d, J = 6.6 Hz, HC-CH₃), 0.98 (3

H, d, J = 6.6 Hz, HC-C H_3), 1.52 (1 H, ddd, J = 14.4, 11.9, 5.1 Hz, CHCHMe $_2$), 1.56 (3 H, s, 3 $_{\alpha}$ -Me), 1.62 (3 H, s, 3 $_{\beta}$ -Me), 1.74 (1 H, m, CHMe $_2$), 2.00 (1 H, ddd, J = 14.4, 11.9, 5.1 Hz, CHCHMe $_2$), 3.98 (1 H, ddd, J = 9.4, 3.9, 1.2 Hz, 6-H), 4.03 (1 H, t, J = 11.7 Hz, 1 $_{\beta}$ -H), 4.31–4.70 (2 H, m, 1 $_{\alpha}$,8a-H $_2$), 4.70 (1 H, br, NH), 6.31 (1 H, br, 7-H); ¹³C NMR (CDCl $_3$) (HSQC/HMBC) δ 21.25 (HC-CH $_3$), 23.50 (3 $_{\alpha}$ -Me), 24.68 (CHMe $_2$), 25.30 (3 $_{\alpha}$ -Me), 38.04 (CH $_2$ CHMe $_2$), 53.67 (6-C), 57.06 (8a-C), 65.12 (1-C), 95.95 (3-C), 164.17 (5-C), 168.40 (8-C); HRESIMS: 263.1372 [M + Na]+ (C $_{12}$ H $_{20}$ N $_2$ NaO $_3$ requires 263.1371), 241.1550 [M + H]+ (C $_{12}$ H $_{21}$ N $_2$ O $_3$ requires 241.1552).

6S,8aR-3,3-Dimethyl-6-(1-methylethyl) tetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5cR) Method A

Alloc-L-Val-R-DmoOMe **8bR** was treated with Pd(PPh₃)₄ and Me₃SiNMe₂, as for the synthesis of **5aR** (Method B), to give **5bR** (44%) as white crystals: mp 160–161°C. ¹H NMR (CDCl₃) δ 0.97 (3 H, d, J = 6.6 Hz, Val pro-S Me), 1.01 (3 H, d, J = 6.6 Hz, Val pro-R Me), 1.60 (6 H, s, 2 × 3-Me), 2.23 (1 H, d septet, J = 5.8, 6.6 Hz, CHMe₂), 3.65 (1 H, dd, J = 5.8, 4.4 Hz, 6-H), 3.88 (1 H, t, J = 11.6 Hz, 1-H), 4.29-4.35 (2 H, m, 1,8a-H₂), 7.17 (1 H, br, 7-H); ¹³C-NMR (CDCl₃) (HMBC/HSQC) δ 17.73 (Val pro-S Me), 18.90 (Val pro-R Me), 23.30 (3-Me), 25.55 (3-Me), 32.95 (CHMe₂), 56.10 (8a-C), 63.73 (6-C), 65.90 (1-C), 96.21 (3-C), 163.58 (5-C), 167.75 (8-C); HRESIMS m/z 249.1209 [M + Na]⁺ (C₁₁H₁₈N₂NaO₃ requires 249.1215).

6S,8aR-3,3-Dimethyl-6-(1-methylethyl) tetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5cR) Method B

Alloc-L-Leu-R-DmoOMe **8bR** was treated with Pd(PPh₃)₄ and DABCO, as for the synthesis of **5aR** (Method C), to give **5bR** (quant.), with properties as above.

6S,8aS-3,3-Dimethyl-6-(1-methylethyl) tetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5cS) Method A

Alloc-L-Val-*S*-DmoOMe **8cS** was treated with Pd(PPh₃)₄ and Me₃SiNMe₂, as for the synthesis of **5aR** (Method B), to give **5cS** (quant.) as a colourless oil: ¹H NMR (CDCl₃): δ 0.91 (3 H, d, J = 6.6 Hz, Val pro-R Me), 1.06 (3 H, d, J = 6.6 Hz, Val pro-S Me), 1.57 (3 H, s, 3_α-Me), 1.63 (3 H, s, 3_β-Me), 2.61 (1 H, d septet, J = 2.3, 7.0 Hz, $CHMe_2$), 3.90 (1 H, dd, J = 2.4, 1.5 Hz, 6-H), 4.00 (1 H, J = 11.7 Hz, 1_β-H), 4.30-4.35 (2 H, m, 1_α, 8a-H₂), 6.39 (1 H, br, 7-H); ¹³C NMR (CDCl₃) (HMBC/HSQC) δ 15.88 (Val pro-R Me), 19.15 (Val pro-S Me), 23.68 (3_β-Me), 25.35 (3_α-Me), 28.12 ($CHMe_2$), 56.78 (8a-C), 60.57 (6-C), 65.40 (1-C), 96.05 (3-C), 163.12 (5-C), 168.38 (8-C); HRESIMS m/z 249.1202 [M + Na]+ (C₁₁H₁₈N₂NaO₃ requires 249.1215), 227.1370 [M + H]+ (C₁₁H₁₉N₂O₃ requires 227.1395).

6S,8aS-3,3-Dimethyl-6-(1-methylethyl) tetrahydrooxazolo[3,4-a]pyrazine-5,8-dione (5cS) Method B

Alloc-L-Leu-S-DmoOMe **8cS** was treated with $Pd(PPh_3)_4$ and DABCO, as for the synthesis of **5aR** (Method C), to give **5cS** (62%), with properties as above.

N-(N-(Prop-2-enyloxycarbonyl)-L-alanyl)-D-serine methyl ester (7dR)

Alloc-L-AlaOH **6a**^[20] (1.00 g, 5.8 mmol) was stirred with HOBt (860 mg, 6.4 mmol) and DCC (1.31 g, 6.4 mmol) in

CH₂Cl₂ (20 mL) at 0°C for 1 h. D-Ser-OMe.HCl (820 mg, 5.8 mmol) and Et₃N (1.17 g, 11.6 mmol) were added and the mixture was stirred for 2 d at 20°C and allowed to stand at 4°C for 16 h. Filtration (Celite®), washing (aq. citric acid (10%), aq. NaHCO₂ (5%), water), drying, evaporation and chromatography (CH₂Cl₂/EtOAc 1:1) gave 7aR (760 mg, 48%) as pale yellow crystals: mp 82–83°C. ¹H NMR $(CDCl_2) \delta 1.41 (3 H, dd, J = 6.9 Hz, Ala Me), 3.03 (1 H, br,$ OH), 3.77 (3 H, s, OMe), 3.95 (2 H, m, Ser β -H₂), 4.28 (1 H, qn, J = 6.9 Hz, Ala α -H), 4.56-4.61 (2 H, m, Alloc 1-H₂), 4.62 (1 H, dt, J = 7.7, 6.8 Hz, Ser α -H), 5.22 (1 H, ddd, J =10.5, 3.0, 1.6 Hz, Alloc 3_{cis} -H), 5.30 (1 H, ddd, J = 18.8, 3.0, 1.6 Hz, Alloc 3_{trans}-H), 5.47 (1 H, br, Ala NH), 5.88 (1 H, m, Alloc 2-H), 7.13 (1 H, d, J = 7.2 Hz, Ser NH); ¹³C NMR (CDCl₂) (HSQC/HMBC) δ 18.57 (Ala Me), 50.96 (OMe), 52.87 (Ala α -C), 54.78 (Ser α -C), 62.82 (Ser β -C), 66.20 (Alloc 1-C), 118.21 (Alloc 3-C), 132.41 (Alloc 2-C), 156.23 (Alloc C=O), 170.95 (Ala C=O), 172.75 (Ser C=O).

N-(N-(Prop-2-enyloxycarbonyl)-L-alanyl)-L-serine methyl ester (7aS)

Alloc-L-AlaOH **6a**^[20] was treated with L-SerOMe.HCl, HOBt and DCC, as for the synthesis of **7aR**, to give **7aS**^[21] (44%) as pale yellow crystals: mp 86–87°C. ¹H NMR (CDCl₃) δ 1.39 (3 H, d, J = 7.2 Hz, Ala Me), 3.51 (1 H, br, OH), 3.76 (3 H, s, OMe), 3.92 (2 H, m, Ser β-H₂), 4.28 (1 H, qn, J = 7.2 Hz, Ala α-H), 4.53 (2 H, d, J = 4.1 Hz, Alloc 1-H₂), 4.63 (1 H, q, J = 7.4 Hz, Ser α-H), 5.19 (1 H, dd, J = 10.5, 1.4 Hz, Alloc 3_{cis}-H), 5.27 (1 H, ddd, J = 18.7, 3.0, 1.4 Hz, Alloc 3_{trans}-H), 5.64 (1 H, d, J = 7.4 Hz, Ser NH); 5.87 (1 H, m, Alloc 2-H), 7.16 (1 H, d, J = 7.4 Hz, Ser NH); 13 C-NMR (CDCl₃) (HSQC/HMBC) δ 18.57 (Ala Me), 50.50 (OMe), 52.83 (Ala α-C), 54.74 (Ser α-C), 62.58 (Ser β-C), 66.10 (Alloc 1-C), 118.10 (Alloc 3-C), 132.46 (Alloc 2-C), 156.25 (Alloc C=O), 170.95 (Ala C=O), 172.89 (Ser C=O).

N-(N-(Prop-2-enyloxycarbonyl)-L-leucyl)-D-serine methyl

ester (7bR)

Alloc-L-LeuOH **6b**^[20] was treated with D-SerOMe.HCl, HOBt and DCC, as for the synthesis of **7a**R, to give **7b**R (92%) as a pale yellow gum. ¹H NMR (CDCl₃) δ 0.91 (3 H, d, J = 6.3 Hz, Leu Me), 0.94 (3 H, d, J = 6.3 Hz, Leu Me), 1.54 (1 H, dd, J = 9.4, 8.6 Hz, Leu β-H), 1.67 (2 H, m, Leu β, γ-H₂), 2.99 (1 H, br, OH), 3.76 (3 H, s, OMe), 3.93 (2 H, d, J = 3.6 Hz, Ser β-H₂), 4.21 (1 H, dd, J = 9.4, 3.6 Hz, Leu α-H), 4.55 (2 H, d, J = 5.5 Hz, Alloc 1-H₂), 4.61 (1 H, q, J = 7.4 Hz, Ser α-H), 5.20 (1 H, dd, J = 10.2, 1.4 Hz, Alloc 3_{cis}-H), 5.28 (1 H, ddd, J = 18.7, 2.7, 1.4 Hz, Alloc 3_{trans}-H), 5.34 (1 H, br, Leu NH), 5.88 (1 H, m, Alloc 2-H), 7.14 (1 H, d, J = 7.4 Hz, Ser NH); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 21.76 (Leu Me), 23.08 (Leu Me), 24.82 (Leu γ-C), 41.25 (Leu β-C), 52.86 (OMe), 53.73 (Leu α-C), 54.74 (Ser α-C), 62.63 (Ser β-C), 66.23 (Alloc 1-C), 118.19 (Alloc

N-(N-(Prop-2-enyloxycarbonyl)-L-leucyl)-L-serine methyl ester (7bS)

C=O), 171.23 (Ser C=O).

3-C), 132.40 (Alloc 2-C), 156.39 (Alloc C=O), 170.94 (Leu

Alloc-L-LeuOH **6b**^[20] was treated with L-SerOMe.HCl, HOBt and DCC, as for the synthesis of **7a***R*, to give **7b***S*

(55%) as a white powder: mp 82–83°C. 1 H NMR (CDCl₃) δ 0.92 (3 H, d, J = 6.3 Hz, Leu Me), 0.94 (3 H, d, J = 6.3 Hz, Leu Me), 1.54 (1 H, m, Leu β-H), 1.66–1.72 (2 H, m, Leu β,γ-H₂), 2.91 (1 H, t, J = 6.6 Hz, OH), 3.78 (3 H, s, OMe), 3.93-3.95 (2 H, m, Ser β-H₂), 4.16 (1 H, m, Leu α-H), 4.55 (2 H, d, J = 5.5 Hz, Alloc 1-H₂), 4.63 (1 H, q, J = 7.4 Hz, Ser α-H), 5.21 (1 H, dd, J = 10.5, 1.4 Hz, Alloc 3_{cis}-H), 5.29 (1 H, dd, J = 17.3, 1.4 Hz, Alloc 3_{trans}-H), 5.88 (1 H, m, Alloc 2-H), 6.86 (1 H, d, J = 7.4 Hz, Ser NH); 13 C NMR (CDCl₃) (HSQC/HMBC) δ 22.02 (Leu Me), 22.94 (Leu Me), 24.73 (Leu γ-C), 41.28 (Leu β-C), 52.82 (OMe), 53.65 (Leu α-C), 54.74 (Ser α-C), 62.64 (Ser β-C), 66.16 (Alloc 1-C), 118.12 (Alloc 3-C), 132.44 (Alloc 2-C), 156.49 (Alloc C=O) 170.83 (Leu C=O), 172.61 (Ser C=O).

N-(N-(Prop-2-enyloxycarbonyl)-L-valyl)-D-serine methyl ester (7cR)

Alloc-L-ValOH 6c^[20] was treated with D-SerOMe.HCl, HOBt and DCC, as for the synthesis of 7aR, to give 7cR (35%) as a white powder: mp 128–129°C. ¹H NMR (CDCl₂) δ 0.93 (3 H, d, J = 6.9 Hz, Val Me), 0.98 (3 H, d, J = 6.9 Hz, Val Me), 2.17 (1 H, m, Val β -H), 2.80 (1 H, t, J = 6.0 Hz, OH), 3.78 (3 H, s, OMe), 3.92-3.98 (2 H, m, Ser β -H₂), 4.04 (1 H, m, Val α -H), 4.56 (2 H, d, J = 5.5 Hz, Alloc 1-H₂), 4.64 (1 H, q, J = 6.9 Hz, Ser α -H), 5.21 (1 H, dd, J = 10.2, 1.4 Hz, Alloc 3_{ci} -H), 5.29 (1 H, dd, J = 17.4, 1.4 Hz, Alloc 3_{trans} -H), 5.38 (1 H, d, J = 7.4 Hz, Val NH), 5.90 (1 H, m, Alloc 2-H), 6.98 (1 H, d, J = 6.9 Hz, Ser NH); ¹³C NMR (CDCl₂) (HSQC/HMBC) δ 17.93 (Val Me), 19.32 (Val Me), 30.91 (Val β-C), 52.90 (OMe), 54.74 (Ser α-C), 60.57 (Val α -C), 63.0 0 (Ser β -C), 66.20 (Alloc 1-C), 118.19 (Alloc 3-C), 132.49 (Alloc 2-C), 156.64 (Alloc C=O), 170.87 (Val C=O), 171.59 (Ser C=O).

N-(N-(Prop-2-enyloxycarbonyl)-L-valyl)-L-serine methyl ester (7cS)

Alloc-L-ValOH 6c[20] was treated with L-SerOMe.HCl, HOBt and DCC, as for the synthesis of 7aR, to give 7cS (37%) as a white powder: mp 174–175°C. ¹H NMR (CDCl₂) δ 0.96 (3 H, d, J = 6.7 Hz, Val Me), 0.99 (3 H, d, J = 6.7 Hz, Val Me), 2.10 (1 H, m, Val β-H), 3.05 (1 H, br, OH), 3.78 (3 H, s, OMe), 3.95 (1 H, m, Val α -H), 3.97 (1 H, dd, J = 12.0, 6.6 Hz, Ser β -H), 4.00 (1 H, dd, J = 12.0, 6.6 Hz, Ser β -H), 4.55 (2 H, d, J = 5.5 Hz, Alloc 1-H₂), 4.67 (1 H, dt, J = 7.7, 6.6 Hz, Ser α -H), 5.21 (1 H, dd, J = 10.5, 1.4 Hz, Alloc 3 H), 5.29 (1 H, dd, J = 17.0, 1.4 Hz, Alloc 3_{trans} -H), 5.42 (1 H, d, J = 8.0 Hz, Val NH), 5.82-5.96 (1 H, m, Alloc 2-H), 6.87 (1 H, d, J = 7.7 Hz, Ser NH); ¹³C NMR (CDCl₂) (HSQC/ HMBC) δ 18.08 (Val Me), 19.24 (Val Me), 31.09 (Val β -C), 52.87 (OMe), 54.73 (Ser α -C), 60.77 (Val α -C), 62.90 (Ser β-C), 66.16 (Alloc 1-C), 118.11 (Alloc 3-C), 132.52 (Alloc 2-C), 156.57 (Alloc C=O), 170.75 (Val C=O), 171.71 (Ser C=O).

Methyl R-2,2-dimethyl-3-((N-prop-2-enyloxycarbonyl)-L-alanyl)oxazolidine-4-carboxylate (8aR)

Alloc-L-Ala-D-SerOMe **7aR** was treated with 2,2-dimethoxypropane and TsOH, as for the synthesis of **4aR**, except that the solvent was toluene, the reaction time was 2 h and the chromatographic eluant was hexane/

EtOAc (7:3), to give **8aR** (79%) as a colourless oil: ¹H NMR (CDCl₃) δ 1.31 (3 H, d, J = 6.6 Hz, Ala Me), 1.54 (3 H, s, Dmo 2_{α} -Me), 1.64 (3 H, s, Dmo 2_{β} -Me), 3.79 (3 H, s, OMe), 4.14-4.18 (1 H, m, Ala α -H), 4.16 (1 H, dd, J = 9.4, 6.6 Hz, Dmo 5_{α} -H), 4.28 (1 H, d, J = 9.4 Hz, Dmo 5_{8} -H), 4.51 (2 H, t, J = 5.9 Hz, Alloc 1-H₂), 5.09 (1 H, d, J = 6.6 Hz, Dmo 4-H), 5.19 (1 H, dd, J = 10.5, 1.2 Hz, Alloc 3_{cis} -H), 5.26 (1 H, dd, J = 17.2, 1.2 Hz, Alloc 3_{trans} -H), 5.32 (1 H, d, J = 7.8 Hz, NH), 5.86 (1 H, m, Alloc 2-H); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 17.78 (Ala Me), 23.08 (Dmo 2_{g} -Me), 24.97 (Dmo 2_{g} -Me), 49.21 (Ala α -C), 52.88 (OMe), 59.35 (Dmo 4-C), 65.78 (Alloc 1-C), 66.96 (Dmo 5-C), 96.62 (Dmo 2-C), 117.69 (Alloc 3-C), 132.46 (Alloc 2-C), 155.90 (Alloc C=O), 170.41 (Ala C=O), 171.14 (Dmo C=O); HRESIMS m/z 337.1344 [M + Na]⁺ (C₁₄H₂₂N₂NaO₄ requires 337.1375).

Methyl S-2,2-dimethyl-3-((N-prop-2-enyloxycarbonyl)-L-alanyl)oxazolidine-4-carboxylate (8aS)

Alloc-L-Ala-L-SerOMe **7aS** was treated 2,2-dimethoxypropane and TsOH, as for the synthesis of **8aR**, to give **8aS**(82%) as a pale yellow oil: 'H NMR $(CDCl_3)$ δ 1.31 (3 H, d, J = 6.6 Hz, Ala Me), 1.52 (3 H, s, Dmo 2_{β} -Me), 1.68 (3 H, s, Dmo 2_{α} -Me), 3.78 (3 H, s, OMe), 4.15 (1 H, dd, J = 9.4, 5.8 Hz, Dmo 5_{6} -H), 4.24 (1H, qn, J = 6.6 Hz, Ala α -H), 4.28 (1 H, dd, J = 9.4, 1.2 Hz, Dmo 5_{α} -H), 4.43 (1 H, d, J = 5.8 Hz, Dmo 4-H), 4.52 (2 H, dd, J = 5.2, 1.4 Hz, Alloc 1-H₂), 5.19 (1 H, dd, J =10.4, 1.4 hz, Alloc 3_{cis} -H), 5.28 (1 H, dd, J = 17.0, 1.4 Hz, Alloc 3_{trans} -H), 5.62 (1 H, d, J = 7.8 Hz, NH), 5.89 (1 H, m, Alloc 2-H). ¹³C NMR (CDCl₃) (HMBC/HSQC) δ 19.19 (Ala Me), 23.21 (Dmo 2_{β} -Me), 25.12 (Dmo 2_{α} -Me), 53.23 (OMe), 58.88 (Dmo 4-C), 60.37 (Ala α-C), 65.62 (Alloc 1-C), 66.99 (Dmo 5-C), 96.85 (Dmo 2-C), 117.58 (Alloc 3-C), 132.69 (Alloc 1-C), 155.09 (Alloc C=O), 169.72 (Ala C=O), 170.30 (Dmo C=O). HRESIMS m/z 337.1359 [M + Na]⁺ ($C_{14}H_{22}N_2NaO_6$ requires 337.1375).

Methyl R-2,2-dimethyl-3-((N-prop-2-enyloxycarbonyl)-L-leucyl)oxazolidine-4-carboxylate (8bR)

Alloc-L-Leu-D-SerOMe 7bR was treated 2,2-dimethoxypropane and TsOH, as for the synthesis of **8aR**, to give **8bR** (78%) as a pale yellow oil: ¹H NMR $(CDCl_3)$ δ 0.82 (3 H, d, J = 6.6 Hz, Leu Me), 0.90 (3 H, d, J = 6.6 Hz, Leu Me), 1.43-1.50 (1 H, m, Leu β -H), 1.54 (3 H, s, Dmo 2_{α} -Me), 1.60 (2 H, m, Leu β, γ -H₂), 1.65 (3 H, s, Dmo 2_{R} -Me), 3.77 (3 H, s, OMe), 4.09 (1 H, m, Leu α -H), 4.18 (1 H, d, J = 5.9 Hz, Dmo 5_{α} -H), 4.23 (1 H, dd, J = 9.0, 1.6 Hz, Dmo 5_{g} -H), 4.52 (2 H, dd, J = 5.3, 1.6 Hz, Alloc $1-H_2$), 5.10 (1 H, d, J = 5.9 Hz, Dmo 4-H), 5.19 (1 H, d, J = 10.5 Hz, Alloc 3_{cis}-H), 5.26 (1 H, dd, J = 17.2, 1.6 Hz, Alloc 3_{trans}-H), 5.87 (1 H, m, Alloc 2-H), 5.93 (1H, δ , J =8.8 Hz, NH). ¹³C NMR (CDCl₃) (HMBC/HSQC) d21.23 (Leu Me), 23.14 (Dmo 2_{α} -Me), 23.46 (Leu Me), 24.26 (Leu γ -H), 24.94 (Dmo 2_{β} -Me), 40.62 (Leu β -C), 51.93 (Leu α-C), 52.82 (OMe), 59.35 (Dmo 4-C), 65.85 (Alloc 1-C), 67.09 (Dmo 5-C), 96.66 (Dmo 2-C), 117.68 (Alloc 3-C), 132.51 (Alloc 2-H), 156.37 (Alloc C=O), 170.35 (Leu C=O), 171.15 (Dmo C=O). HRESIMS *m/z* 379.1816 [M + Na]⁺ ($C_{17}H_{28}N_2NaO_6$ requires 379.1840).

Methyl S-2,2-dimethyl-3-((N-prop-2-enyloxycarbonyl)-L-leucyl)oxazolidine-4-carboxylate (8bS)

Alloc-L-Leu-L-SerOMe**7b**S treated 2,2-dimethoxypropane and TsOH, as for the synthesis of 8aR, to give 8bS (84%) as a pale yellow oil: ¹H NMR $(CDCl_3) \delta 0.91 (3 H, d, J = 6.6 Hz, Leu Me), 0.94 (3 H, d, J)$ = 6.3 Hz, Leu Me), 1.29 (1 H, m, Leu β-H), 1.48–1.53 (2 H, m, Leu β , γ-H₂), 1.51 (3 H, s, Dmo 2₈-Me), 1.68 (3 H, s, Dmo 2_{α} -Me), 3.79 (3 H, s, OMe), 4.17 (1 H, dd, J = 9.4, 6.3 Hz, Dmo 5_{β} -H), 4.24 (1 H, t, J = 9.5 Hz, Leu α-H), 4.25 (1 H, dd, J = 9.4, 1.6 Hz, Dmo 5_{α} -H), 4.42 (1 H, dd, J = 6.3, 1.6 Hz, Dmo 4-H), 4.51 (2 H, dd, J = 5.2, 1.4 Hz, Alloc 1-H₂), 5.17 (1 H, dd, J = 10.5, 1.4 Hz, Alloc 3_{cis} -H), 5.27 (1 H, dd, J = 17.0, 1.4 Hz, Alloc 3_{trans}-H), 5.37 (1 H, d, J = 9.1 Hz, NH), 5.88 (1 H, m, Alloc 2-H); ¹³C NMR (CDCl₃) (HSQC/ HMBC) δ 21.69 (Leu Me), 23.33 (Dmo 2₈-Me), 23.41 (Leu Me), 24.45 (Leu γ-C), 25.01 (Dmo 2_{α} -Me), 43.17 (Leu β-C), 51.77 (Leu α-C), 53.25 (OMe), 58.92 (Dmo 4-C), 65.63 (Alloc 1-C), 66.96 (Dmo 5-C), 96.84 (Dmo 2-C), 117.51 (Alloc 3-C), 132.72 (Alloc 2-C), 155.59 (Alloc C=O), 170.35 (Leu C=O), 171.11 (Dmo C=O). HRESIMS m/z $379.1800 [M + Na]^+ (C_{17}H_{28}N_2NaO_6$ requires 379.1840).

Methyl R-2,2-dimethyl-3-((N-prop-2-enyloxycarbonyl)-L-valyl)oxazolidine-4-carboxylate (8cR)

Alloc-L-Val-D-SerOMe **7c***R* was treated 2,2-dimethoxypropane and TsOH, as for the synthesis of 8aR, to give 8cR (86%) as a pale yellow oil: ¹H NMR $(CDCl_3) \delta 0.91 (3 H, d, J = 6.9 Hz, Val Me), 0.94 (3 H, d, J =$ 6.9 Hz, Val Me), 1.55 (3 H, s, Dmo 2_a-Me), 1.68 (3 H, s, Dmo 2_{β} -Me), 2.02 (1 H, m, Val β -H), 3.78 (3 H, s, OMe), 3.83 (1 H, d, J = 8.8 Hz, Val α -H), 4.12 (1 H, dd, J = 9.4, 6.3 Hz, Dmo 5_{α} -H), 4.23 (1 H, d, J = 9.4 Hz, Dmo 5_{α} -H), 4.55 (2 H, dd, J = 5.5, 1.4 Hz, Alloc 1-H₂), 5.13 (2 H, m, Dmo 4-H and NH), 5.20 (1 H, dd, J = 10.5, 1.4 Hz, Alloc 3_{cis}-H), 5.27 (1 H, dd, J = 17.4, 1.4 Hz, Alloc 3_{trans} -H), 5.89 (1 H, m, Alloc 2-H); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 18.09 (Val Me), 19.67 (Val Me), 23.08 (Dmo 2_{α} -Me), 25.09 (Dmo 2_{β} -Me), 30.60 (Val β-C), 52.88 (OMe), 59.11 (Val α-C), 59.37 (Dmo 4-C), 66.00 (Alloc 1-C), 67.36 (Dmo 5-C), 96.84 (Dmo 2-C), 117.80 (Alloc 3-C), 132.56 (Alloc 2-C), 156.45 (Alloc C=O), 169.50 (Val C=O), 171.22 (Dmo C=O); HRESIMS m/z 341.1714 [M - H]⁻ (C₁₆H₂₅N₂O₆ requires 341.1712).

Methyl S-2,2-dimethyl-3-((N-prop-2-enyloxycarbonyl)-L-valyl)oxazolidine-4-carboxylate (8cS)

7cS Alloc-L-Val-L-SerOMe was treated 2,2-dimethoxypropane and TsOH, as for the synthesis of 8aR, to give 8cS (99%) as a pale yellow oil: ¹H NMR $(CDCl_3)$ δ 0.91 (3 H, d, J = 6.9 Hz, Val Me), 0.95 (3 H, d, J = 6.9 Hz, Val Me), 1.53 (3 H, s, Dmo 2₈-Me), 1.68 (3 H, s, Dmo 2_{α} -Me), 1.92 (1 H, octet, J = 6.9 Hz, Val β-H), 3.77 (3 H, s, OMe), 4.03 (1 H, dd, J = 9.4, 6.9 Hz, Val α -H), 4.17 (1 H, dd, J = 9.4, 6.3 Hz, Dmo 5_{R} -H), 4.26 (1 H, dd, J= 9.4, 1.7 Hz, Dmo 5_{α} -H), 4.52 (2 H, m, Alloc 1-H₂), 4.56 (1 H, dd, J = 6.3, 1.7 Hz, Dmo 4-H), 5.19 (1 H, dd, J = 10.5, 1.4 Hz, Alloc 3_{ci} -H), 5.28 (1 H, dd, J = 17.0, 1.4 Hz, Alloc $_{10}$ -H), 5.39 (1 H, d, J = 9.4 Hz, NH), 5.90 (1 H, m, Alloc 2-H); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 17.48 (Val Me), 19.13 (Val Me), 23.44 (Dmo 2_{β} -Me), 25.06 (Dmo 2_{α} -Me), 32.39 (Val β-C), 53.25 (OMe), 58.31 (Val α-H), 59.31 (Dmo 4-H), 65.66 (Alloc 1-C), 66.86 (Dmo 5-C), 96.85 (Dmo 2-C), 117.54 (Alloc 3-C), 132.78 (Alloc 2-C), 155.79 (Alloc C=O), 169.18 (Val C=O), 170.31 (Dmo C=O); HRESIMS *m/z* 365.1651 [M + Na]⁺ (C₁₆H₂₆N₂NaO₆requires 365.1683).

R-2,2-Dimethyl-3-(N-prop-2-enyloxycarbonyl)-L-valinyl) tetrahydrooxazole-4-carboxylic acid (10R)

Alloc-L-Val-R-Dmo-OMe 4bR (280 mg, 0.82 mmol) was stirred with aq. NaOH (5.0 M, 0.18 mL, 0.90 mmol) in MeOH (15 mL) for 16 h. The evaporation residue, in water, was acidified with citric acid (aq., 10%) to pH 5 and was extracted (EtOAc, 3×). Drying and evaporation gave 10R (200 mg, 74%) as a pale yellow oil: ¹H NMR (CDCl₃) δ 0.90 (3 H, d, J = 6.6 Hz, Val Me), 0.92 (3 H, d, J = 6.6 Hz, Val Me), 1.54 (3 H, s, 2-Me), 1.66 (3 H, s, 2-Me), 2.03 (1 H, m, Val β-H), 3.87 (1 H, t, J 9.0, Val γ -H), 4.12 (1 H, dd, J = 9.4, 6.6 Hz, 5-H), 4.32 (1 H, dd, J = 9.4, 5.1 Hz, 5-H), 4.47-4.57 (2 H, m, Alloc 1-H₂), 5.14-5.18 (2 H, m, 4-H and Alloc 3₁₁-H), 5.24 (1 H, dd, J = 17.2, 1.6 Hz, Alloc 3_{trans} -H), 5.61 (1 H, d, J = 9.3 Hz, NH), 5.86 (1 H, m, Alloc 2-H), 7.25 (1 H, br, OH); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 18.13 (Val Me), 19.42 (Val Me), 22.91 (2-Me), 24.89 (2-Me), 30.43 (Val β -C), 59.31 (Val α -C), 59.40 (4-C), 65.86 (Alloc 1-C), 67.33 (5-C), 96.81 (2-C), 117.56 (Alloc 3-C), 132.48 (Alloc 2-C), 156.58 (Alloc C=O), 170.27 (Val C=O), 173.61 (Dmo C=O); HRESIMS m/z 655.3175 [2 M - H]⁻ (C₃₀H₄₇N₄O₁₂requires 655.3203), $327.1571 [M - H]^{-} (C_{15}H_{23}N_2O_6 requires 327.1562).$

S-2,2-Dimethyl-3-(N-prop-2-enyloxycarbonyl)-L-valinyl) tetrahydrooxazole-4-carboxylic acid (10S)

Alloc-L-Val-S-Dmo-OMe **4bS** was treated with NaOH, as for the synthesis of 10R, to give 10S (85%) as a pale yellow oil: 1 H NMR (CDCl₃) δ 0.87 (3 H, d, J = 6.6 Hz, Val Me), 0.93 (3 H, d, J = 6.6 Hz, Val Me), 1.49 (3 H, s, 2-Me), 1.63 (3 H, s, 2-Me), 1.89 (1 H, octet, J = 6.6 Hz, Val β -H), 4.09 (1 H, dd, J = 9.4, 6.6 Hz, 5-H), 4.27 (1 H, dd, J = 9.4,6.6 Hz, Val α -H), 4.30 (1 H, d, J = 9.4 Hz, 5-H), 4.42 (1 H, d, J = 5.4 Hz, Alloc 1-H), 4.48 (1 H, d, J = 5.4 Hz, Alloc 1-H), 4.53 (1 H, d, J = 6.1 Hz, 4-H), 5.13 (1 H, dd, J =10.5, 1.1 Hz, Alloc 3_{cis} -H), 5.23 (1 H, dd, J = 17.2, 1.1 Hz, Alloc 3_{trans} -H), 5.82 (1 H, m, Alloc 2-H), 5.94 (1 H, d, J =9.4 Hz, NH), 7.25 (1 H, br, OH); ¹³C NMR (CDCl₂) (HSQC/ HMBC) δ 17.30 (Val Me), 18.81 (Val Me), 23.31 (2-Me), 25.23 (2-Me), 32.63 (Val β -C), 57.97 (Val α -C), 59.11 (4-C), 66.29 (Alloc 1-C), 66.91 (5-C), 96.72 (2-C), 117.95 (Alloc 3-C), 132.25 (Alloc 2-C), 156.44 (Alloc C=O), 169.18 (Val C=O), 172.02 (Dmo C=O); HRESIMS m/z 655.3184 $[2 M - H]^{-}(C_{30}H_{47}N_{4}O_{12}$ requires 655.3203), 327.1565 [M - $H_{15}^{-}(C_{15}H_{23}N_{2}O_{6}$ requires 327.1562).

Pentafluorophenyl R-2,2-dimethyl-3-(N-prop-2-enyloxycarbonyl)-L-valinyl)tetrahydrooxazole-4-carboxylate (11R)

Alloc-L-Val-S-Dmo-OH **10R** (210 mg, 0.64 mmol), pentafluorophenol (130 mg, 0.70 mmol) and DCC (140 mg, 0.70 mmol) were stirred in EtOAc (10 mL) at 0°C under N₂ for 4 h. Filtration (Celite®, twice) and evaporation gave **11R** (310 mg, quant.) as a pale yellow solid: mp 118–120°C; ¹H NMR (CDCl₂) δ 0.86 (3 H, d, J = 6.6 Hz, Val Me), 0.96 (3

H, d, J = 6.6 Hz, Val Me), 1.56 (3 H, s, 2-Me), 1.68 (3 H, s, 2-Me), 2.02 (1 H, m, Val β-H), 4.25-4.35 (2 H, m, Val α-H + 5-H), 4.40 (1 H, d, J = 9.9 Hz, 5-H), 4.54 (2 H, d, J = 5.5 Hz, Alloc 1-H₂), 5.19 (1 H, dd, J = 10.4, 1.1 Hz, Alloc 3_{cis}-H), 5.26 (1 H, dd, J = 17.1, 1.4 Hz, Alloc 3_{rans}-H), 5.50 (1 H, d, J = 9.1 Hz, NH), 5.66 (1 H, d, J = 6.0 Hz, 4-H), 5.87 (1 H, m, Alloc 2-H); ¹⁹F NMR (CDCl₃) δ -161.37 (2 F, dd, J = 21.0, 17.1 Hz, 3',5'-F₂), -156.61 (1 F, t, J = 21.0 Hz, 4'-F), -152.68 (2 F, d, J = 17.1 Hz, 2',6'-F₂); HRESIMS m/z 517.1352 [M + Na]⁺ (C₂₁H₂₃F₅N₂NaO₆ requires 517.1373).

Pentafluorophenyl S-2,2-dimethyl-3-(N-prop-2-enyloxycarbonyl)-L-valinyl)tetrahydrooxazole-4-carboxylate (11S)

Alloc-L-Val-S-Dmo-OH **10**S was treated pentafluorophenol and DCC, as for the synthesis of 11R, to give 11S (quant.) as a pale yellow solid: mp 66–68°C; ¹H NMR (CDCl₂) δ 0.93 (3 H, d, J = 6.3 Hz, Val Me), 0.98 (3 H, d, J = 6.3 Hz, Val Me), 1.56 (3 H, s, 2-Me), 1.70 (3 H, s, 2-Me), 2.02 (1 H, m, Val β -H), 4.20 (1 H, dd, J = 9.0, 6.3 Hz, Val α -H), 4.27 (1 H, d, J = 6.6 Hz, 5-H), 4.44 (1 H, d, J = $6.6 \,\mathrm{Hz}$, 5-H), 4.50-4.58 (2 H, m, Alloc 1-H₂), 4.93 (1 H, d, J =5.8 Hz, 4-H), 5.11 (1 H, d, J = 10.2 Hz, Alloc 3_{cis}-H), 5.27 (1 H, d, J = 17.2 Hz, Alloc 3_{trans} -H), 5.46 (1 H, J = 9.3 Hz, NH), 5.83 (1 H, m, Alloc 2-H); 19 F NMR (CDCl₃) δ –161.88 (2 F, dd, J = 21.0, 17.1 Hz, 3',5'-F₂), -157.27 (1 F, t, J = 21.0 Hz, 4'-F), -152.36 (2 F, d, J = 17.1 Hz, 2',6'-F₂); HRESIMS m/z517.1385 [M + Na] $^+$ (C₂₁H₂₃F₅N₂NaO₆ requires 517.1373).

R-2,2-Dimethyl-3-(N-allyloxycarbonyl)-L-valinyl)-N-(2-(4-chlorophenyl)ethyl)tetrahydrooxazole-4-carboxamide (12R)

2-(4-Chlorophenyl)ethylamine hydrochloride (117 mg, 0.61 mmol) was stirred with Et₂N (122 mg, 1.2 mmol) and **7bR** (300 mg, 0.61 mmol) in CH₂Cl₂ (4.0 mL) for 2 h. Evaporation and chromatography (EtOAc/hexane 3:7) gave **12R** (280 mg, 70%) as a colourless gum: ¹H NMR (CDCl₂) δ 0.79 (3 H, d, J = 6.5 Hz, Val Me), 0.87 (3 H, d, J = 6.7 Hz, Val Me), 1.47 (3 H, s, 2-Me), 1.58 (3 H, s, 2-Me), 1.93 (1 H, m, Val β -H), 2.76 (2 H, m, ArCH₂), 3.40 (1 H, dq, J =13.4, 6.7 Hz, ArCH₂CH), 3.53 (1 H, dq, J = 13.4, 6.7 Hz, ArCH₂CH), 3.86 (1 H, t, J = 7.6 Hz, Val α -H), 3.99-4.08 (2 H, m, 5-H₂), 4.48-4.53 (2 H, m, Alloc 1-H₂), 4.82 (1 H, d, J = 5.8 Hz, 4-H), 5.14 (1 H, d, J = 10.5 Hz, Alloc 3 = -H), 5.21 (1 H, d, J = 17.3 Hz, Alloc 3_{trans} -H), 5.56 (1 H, br, Val NH), 5.82 (1 H, m, Alloc 2-H), 6.47 (1 H, br, CH₂NH), $7.07 (2 \text{ H}, d, J = 8.2 \text{ Hz}, \text{Ar } 2,6\text{-H}_2), 7.20 (2 \text{ H}, d, J = 8.2 \text{ Hz},$ Ar 3,5-H₂); ¹³C NMR (CDCl₂) (HSQC/HMBC) δ 17.82 (Val Me), 19.38 (Val Me), 20.86 (Val β-C), 22.68 (2-Me), 24.99 (2-Me), 34.69 (ArCH₂CH₂), 40.54 (ArCH₂), 59.03 (Val α-C), 60.23 (5-C), 60.40 (4-C), 65.73 (Alloc 1-C), 96.43 (2-C), 117.56 (Alloc 3-C), 128.66 (Ar 3,5-C₂), 129.92 (Ar 2,6-C₂), 132.37 (Alloc 2-C and Ar 4-C), 136.72 (Ar 1-C), 156.40 (Alloc C=O), 169.96 (Val C=O), 170.98 (Dmo C=O); HRESIMS m/z 488.1924 [M + Na]⁺ (C₂₃H₃₂ ³⁵ClN₃NaO₅ requires 488.1922), 466.2116 [M + H]⁺ (C₂₃H₃₃ ³⁵ClN₃O₅ requires 466.2103).

S-2,2-Dimethyl-3-(N-allyloxycarbonyl)-L-valinyl)-N-(2-(4-chlorophenyl)ethyl)tetrahydrooxazole-4-carboxamide (12S)

Compound **7bS** was treated with 2-(4-chlorophenyl) ethylamine hydrochloride, as for the synthesis of **12R**

except that the chromatographic eluant was EtOAc/ hexane (2:3), to give **12S** (81%) as a pale yellow oil: ¹H NMR (CDCl₃) δ 0.89 (3 H, d, J = 6.5 Hz, Val Me), 0.94 (3 H, d, J = 6.5 Hz, Val Me), 1.44 (3 H, s, 2-Me), 1.45 (3 H, s, 2-Me), 1.86 (1 H, m, Val β -H), 2.76 (2 H, t, J = 7.1 Hz, ArCH₂), 3.42 (1 H, m, ArCH₂CH), 3.51 (1 H, m, ArCH₂CH), 3.76 (1 H, t, J = 6.5 Hz, Val α -H), 3.99 (1 H, t, J = 7.0 Hz, 5-H), 4.28 (1 H, d, J = 5.8 Hz, 4-H), 4.34 (1 H, d, J = 9.1 Hz, 5-H), 4.41-4.51 (2 H, m, Alloc 1-H₂), 5.15 (1 H, d, J = 10.2 Hz, Alloc 3_{cis} -H), 5.24 (1 H, d, J= 17.2 Hz, Alloc 3_{trans} -H), 5.26 (1 H, d, J = 6.8 Hz, Val NH), 5.82 (1 H, m, Alloc 2-H), 7.05 (2 H, d, J = 8.2 Hz, Ar 2,6-H₂), 7.15 (2 H, d, J = 8.2 Hz, Ar 3,5-H₂), 7.27 (1 H, br, CH₂NH); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 17.34 (Val Me), 19.41 (Val Me), 22.46 (2-Me), 25.67 (2-Me), 30.62 (Val β-C), 34.11 (ArCH₂CH₂), 40.86 (ArCH₂), 58.74 (Val α -C), 60.22 (4-C), 65.91 (Alloc 1-C), 67.63 (5-C), 96.83 (2-C), 117.93 (Alloc 3-C), 128.49 (Ar 3,5-C₂), 130.03 (Ar 2,6-C₂), 132.04 (Alloc 2-C), 132.33 (Ar 4-C), 137.25 (Ar 1-C), 156.55 (Dmo C=O), 169.01 (Val C=O), 169.32 (alloc C=O); HRESIMS m/z 488.1890 [M + Na]⁺ $(C_{23}H_{32})^{35}CIN_3NaO_5$ requires 488.1922), 466.2084 [M + $H]^+$ ($C_{23}H_{33}^{-35}ClN_3O_5$ requires 466.2103).

R-(2,2-Dimethyl-3-L-valinyl)-N-(2-(4-chlorophenyl)ethyl) tetrahydrooxazole-4-carboxamide(13R)

Compound 12R (5.0 mg, 10 mmol) was stirred with Pd(PPh₂), (1.0 mg, 9 mmol) and Me₂SiNMe₂ (9.0 mg, 77 mmol) in CH₂Cl₂ (1.0 mL) and water (0.5 mL). After 2 h, the reaction was quenched with aq. NaHCO₂ (5.0 mL) and the mixture was extracted with CH₂Cl₂ (2 × 10 mL). After drying and evaporation, the crude material was analysed by NMR in CDCl₂ (0.6 mL): ¹H NMR (CDCl₂) δ 0.75 (3 H, d, J = 6.6 Hz, Val Me), 0.90 (3 H, d, J = 6.6 Hz, Val Me), 1.25 (3 H, s, 2-Me), 1.54 (3 H, s, 2-Me), 1.86 (1 H, d septet, J = 8.6, 6.6 Hz, Val β -H), 2.77 (1 H, d, J = 8.6 Hz, Val α -H), 2.80 (2 H, m, ArCH₂), 3.39 (1 H, dq, J = 13.2, 6.6 Hz, ArCH₂CH), 3.68 (1 H, dq, J = 13.2, 6.6 Hz, ArCH₂CH), 4.08 (1 H, d, $J = 9.6 \text{ Hz}, 5_{\alpha} - \text{H}, 4.15 (1 \text{ H}, \text{dd}, J = 9.6, 6.0 \text{ Hz}, 5_{\alpha} - \text{H}),$ 4.57 (1 H, d, J = 6.0 Hz, 4-H), 6.00 (1 H, br, NH), 7.09 (2 H, d, J = 8.2 Hz, Ph-H₂), 7.26 (2 H, d, J = 8.2 Hz, Ph-H₂); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 17.59 (Val Me), 20.09 (Val Me), 26.25 (2-Me), 29.68 (2-Me), 31.85 (Val β -C), 34.65 (ArCH₂CH₂), 40.38 (ArCH₂), 60.87 (4-C and Val α -C), 67.66 (5-C), 96.20 (C), 128.94 (2 × Ph-C), 129.97 (2 × Ph-C), 132.13 (Ph-C₂), 136.39 (Ph-C₂), 171.47 (C=O), 172.53 (C=O). HRESIMS m/z 404.1704 [M + Na]⁺ (C₁₉H₂₈ ³⁵ClN₃NaO₃ requires 404.1716), 382.1894 [M + H]⁺ (C₁₉H₂₉ ³⁵ClN₃O₃ requires 382.1897).

S-(2,2-Dimethyl-3-L-valinyl)-N-(2-(4-chlorophenyl)ethyl) tetrahydrooxazole-4-carboxamide(13S)

Compound **12S** was treated with Pd(PPh₃)₄ and Me₃SiNMe₂, as for the synthesis of **13R**, to give crude **13S**: ¹H NMR (CDCl₃) δ 0.82 (3 H, d, J = 6.6 Hz, Val Me), 0.85 (3 H, d, J = 6.6 Hz, Val Me), 1.47 (3 H, s, 2-Me), 1.49 (3 H, s, 2-Me), 1.51 (2 H, br, NH₂), 1.75 (1 H, d septet, J = 8.6, 6.6 Hz, Val β-H), 2.72-2.80 (3 H, m, ArCH₂ + Val α-H), 3.47 (1 H, dq, J = 12.4, 6.2 Hz, ArCH₂CH), 3.55 (1 H, dq, J = 12.4, 6.2 Hz, ArCH₂CH), 4.02 (1 H, dd, J = 9.3, 6.7 Hz,

5-H), 4.29 (2 H, m, 4-H + 5-H), 6.85 (1 H, br, NH), 7.06 (2 H, d, J = 8.6 Hz, Ph-H₂), 7.19 (2 H, d, J = 8.6 Hz, Ph-H₂); ¹³C NMR (CDCl₃) (HSQC/HMBC) δ 17.59 (Val Me), 19.51 (Val Me), 22.54 (2-Me), 25.90 (2-Me), 32.85 (Val β-C), 34.45 (ArCH₂CH₂), 40.86 (ArCH₂), 60.20 (Val α-C), 60.83 (4-C), 67.25 (5-C), 96.54 (C_q), 128.78 (2 × Ph-C), 130.15 (2 × Ph-C), 132.03 (Ph-C_q), 132.12 (Ph-C_q), 170.10 (C=O), 172.52 (C=O); HRESIMS m/z 382.1892 [M + H]⁺ (C₁₀H₂₀ ³⁵ClN₃O₃requires 382.1897).

X-ray Crystallography

Single crystals of compounds 5aR, 5bR and 5cR were analysed at 150 (2) K using graphite-monochromated Mo K_{α} radiation ($\lambda=0.71073$ Å) and a Nonius Kappa CCD diffractometer. Details of the data collections, solutions and refinements are given in **Table 1**. The structures were uniformly solved using SHELXS-97 and refined using full-matrix least squares in SHELXL-97. Crystallographic data for 5aR, 5bR, and 5cR have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC 767300, CCDC 767301, and CCDC 767302, respectively. Requests for data should be addressed to CCDC, 12 Union Road, CambridgeCB2 1EZ, UK.

MTS assay. The cytotoxicity of **5bR** was assayed using HT29 human colon carcinoma cells in an MTS assay, using the method previously described by us. [24]

CONCLUSION

In this paper, we have reported the synthesis of diastereomeric series of cyclo-L-aminoacyl-R/S-Dmo (DKPs). The conformations in solution in deuterochloroform were studied by NMR; for the L,R series, solid-state conformations were also studied by X-ray crystallography. The L,S series had the DKP in a boat conformation with the oxazolidine in a half-chair; the L,R series had the DKP in a flattened conformation with the oxazolidine in an alternative half-chair. The conformations are very similar in each case to those of the corresponding Dmt-containing DKPs reported previously.^[2] The potential utility of L,L-DKPs lacking the second (oxazolidine or thiazolidine) ring, as rigid three-dimensional scaffolds has been reviewed.[25] Moreover, a natural product, aspergilazine A, which contains a Pro-DKP unit, has been shown to have useful anti-influenza A (H,N,) activity; [26] understanding the conformations of Pro-DKPs may shed light on mechanisms of action and aid further drug design. Early kinetic studies have shown that L,R-Dmo dipeptide amides cyclised more rapidly than L,S-diastereoisomers, expelling the model drug and that the rate of cyclisation in the L,R series depends inversely on steric bulk at the α-carbon. We have previously reported on the mechanistic basis of this effect in the Dmt analogues, [2] which is due to steric clashes as the nucleophilic amine approaches the amide carbonyl to form the first tetrahedral intermediate. A similar mechanistic rationale is likely here in the Dmo series. One example, cyclo-L-Leu-R-Dmo **5bR**, has been shown to be completely devoid of toxicity to HT29 human

Table 1: Crystal data and structure refinement of 5aR, 5bR, and 5cR

Compound	5aR	5bR	5cR
Empirical formula	$C_9H_{14}N_2O_3$	$C_{12}H_{20}N_2O_3$	C ₁₁ H ₁₈ N ₂ O ₃
Formula weight	198.22	240.30	226.27
Temperature	150 (2) K	150 (2) K	150 (2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	P21	P212121	P212121
a/Å	5.5770 (2)	6.5510 (1)	7.2820 (4)
b/Å	5.8500 (2)	10.5190 (2)	7.5770 (4)
c/Å	14.9810 (6)	18.5310 (4)	21.4560 (14)
α/°	90	90	90
β/°	93.002 (1)	90	90
$\gamma/^{\mathbf{o}}$	90	90	90
U/\mathring{A}^3	488.09 (3)	1276.97 (4)	1183.85 (12)
Z	2	4	4
Do/g.cm ⁻³	1.349	1.250	1.270
M/mm ⁻¹	0.102	0.090	0.093
F (000)	212	520	488
Crystal size	0.40×0.30×0.07 mm	0.25×0.25×0.06 mm	0.31×0.18×0.07 mm
Theta min, max/°	3.66, 27.57	3.66, 27.45	3.88, 27.54
Index ranges	$-7 \le h \le 7; -7 \le k \le 7; -19 \le l \le 19$	$-8{\le}h \le 8; -13{\le}k \le 13; -24{\le}l \le 24$	$-8 \le h \le 8; -9 \le k \le 9; 26 \le l \le 27$
Reflections collected	8785	23605	8269
Independent reflections, R (int)	2217, 0.0467	2920, 0.0630	2502, 0.0536
Reflections observed (>2 σ)	2094	2491	2014
Data Completeness	0.996	0.997	0.940
Data/restraints/parameters	2217/2/136	2920/1/163	2502/1/154
Goodness-of-fit on F ²	1.050	1.038	1.043
Final R1, wR2 indices [I>2(I)]	0.0319, 0.0786	0.0352, 0.0714	0.0442, 0.0979
Final R1, wR2indices (all data)	0.0345, 0.0804	0.0504, 0.0765	0.0677, 0.1088
Flack parameter	0.2 (9)	-0.1 (10)	-0.5 (14)
Largest diff. peak and hole/eÅ-3	0.200, -0.141	0.216, -0.222	0.226, -0.253

cells, indicating that its generation during the release of active drugs from prodrugs should be safe.

ACKNOWLEDGEMENTS

We wish to thank Dr. Anneke Lubben (University of Bath) for the mass spectra. We are very grateful to the Association for International Cancer Research (now Worldwide Cancer Research) for a generous project grant and to the University of Bath for further financial support. HFD, KO and RHJ carried out part of this work as a project for the MPharm undergraduate degree of the University of Bath.

REFERENCES

 Suaifan, G.A.R.Y., Arafat, T., Threadgill, M.D. Synthetic approaches to peptides containing the L-Gln-L-Val-D(S)-Dmt motif. *Bioorg. Med. Chem.*, 2007, 15, 3474–3488.

- [2] Suaifan, G.A.R.Y., Mahon, M.F., Arafat, T., Threadgill, M.D. Effects of steric bulk and stereochemistry on the rates of diketopiperazine formation from N-aminoacyl-2,2-dimethylthiazolidine-4-carboxamides (Dmt dipeptide amides) a model for a new prodrug linker system. *Tetrahedron*, **2006**, *62*, 11245–11266.
- [3] Twum, E.A., Nathubhai, A., Wood, P.J., Lloyd, M.D., Thompson, A.S., Threadgill, M.D. Initial development of a cytotoxic amino-seco-CBI warhead for delivery by prodrug systems. *Bioorg. Med. Chem.*, 2015, 23, 3481–3489.
- [4] Ferrer, S., Naughton, D.P., Threadgill, M.D. ¹H NMR studies on the reductively triggered release of heterocyclic and steroid drugs from 4,7-dioxoindole-3-methyl prodrugs. *Tetrahedron*, **2003**, *59*, 3445–3454.
- [5] Parveen, I., Naughton, D.P., Whish, W.J.D., Threadgill, M.D. 2-Nitroimidazol-5-ylmethyl as a potentially bioreductively activated prodrug system: Reductively triggered release of the PARP inhibitor

- 5-bromoisoquinolinone. *Bioorg. Med. Chem. Lett.*, **1999**, *9*, 2031–2036.
- [6] Wood, P.J., Scobie, M., Threadgill, M.D. Uptake and retention of nitroimidazole-carboranes designed for boron neutron capture therapy in experimental murine tumours: Detection by ¹¹B magnetic resonance spectroscopy. *Int. J. Radiat. Biol.*, 1996, 70, 587–592.
- [7] Atkinson, J.M., Siller, C.S., Gill, J.H. Tumour endoproteases: The cutting edge of cancer drug delivery? *Br. J. Pharmacol.*, **2008**, *153*, 1344–1352.
- [8] Tranoy-Opalinski, I., Fernandes, A., Thomas, M., Gesson, J.-P., Papot, S. Design of self-immolative linkers for tumour-activated prodrug therapy. *Anti-Cancer Agents Med. Chem.*, 2008, 8, 618–637.
- [9] Kang, Y.K., Park, H.S. Conformational preferences of pseudoproline residues. J. Phys. Chem. B, 2007, 111, 12551–12962.
- [10] Abedini, A., Raleigh, D.P. Incorporation of pseudoproline derivatives allows the facile synthesis of human IAPP, a highly amyloidogenic and aggregationprone polypeptide. Org. Lett., 2005, 7, 693–696.
- [11] White, P., Keyte, J.W., Bailey, K., Bloomberg, G. Expediting the Fmoc solid phase synthesis of long peptides through the application of dimethyloxazolidine dipeptides. J. Peptide Sci., 2004, 10, 18–26.
- [12] An, S.S.H., Lester, C.C., Peng, J.L., Rothwarf, D.M., Welker, E., Thannhauser, T.W., Zhang, L.S., Tam, J.P., Scheraga, H.A. Retention of the cis proline conformation in tripeptide fragments of bovine pancreatic ribonuclease A containing a non-natural proline analogue, 5,5-dimethylproline. *J. Am. Chem.* Soc., 1999, 121, 11558–11566.
- [13] Dumy, P., Keller, M., Ryan, D.E., Rohwedder, B., Wöhr, T., Mutter, M. *Pseudo*-prolines as a molecular hinge: Reversible induction of *cis* amide bonds into peptide back bones. *J. Am. Chem. Soc.*, **1997**, *119*, 918–925.
- [14] Keller, M., Boissard, C., Patiny, L., Chung, N.N., Lemieux, C., Mutter, M., Schiller, P. W. Pseudoprolinecontaining analogues of morphiceptin and endomorphin-2: Evidence for a cis Tyr-Pro amide bond in the bioactive conformation, J. Med. Chem., 2001, 44, 3896–3903.
- [15] Clegg, J.K., Cochrane, J.R., Sayyadi, N., Skropeta, D., Turner, P., Jolliffe, K.A. Solid-state and solution-phase conformations of pseudoproline-containing dipeptides. *Aust. J. Chem.*, 2009, 62, 711–719.

- [16] Wöhr, T., Mutter, M. Pseudo-prolines in peptide synthesis-direct insertion of serine and threonine derived oxazolidines in dipeptides. Tetrahedron Lett., 1995, 36, 3847–3848.
- [17] Karle, I.L. Crystal structure and conformation of the cyclic dipeptide cyclo-L-prolyl-L-leucyl. J. Am. Chem. Soc., 1972, 94, 81–84.
- [18] Young, P.E., Madison, V., Blout, E.R. Cyclic peptides. 15. Lanthanide-assisted ¹³C and ¹H NMR analysis of preferred side-chain rotamers in proline-containing cyclic dipeptides. *J. Am. Chem. Soc.*, **1976**, *98*, 5365–5371.
- [19] Cavelier, F., Marchand, D., Mbassi, P., Martinez, J., Marraud, M. Conformational studies of proline-, thiaproline- and dimethylsilaproline-containing diketopiperazines. *J. Pept. Sci.*, 2006, 12, 621–625.
- [20] Debaene, F., Mejias, L., Harris, J.L., Winssinger, N. Synthesis of a PNA-encoded cysteine protease inhibitor library. *Tetrahedron*, 2004, 60, 8677–8690.
- [21] Attal, S., Bay, S., Cantacuzene, D. Enzymatic synthesis of β-galactosyldipeptides and of β-1,3digalactosylserine derivatives using β-galactosidase. *Tetrahedron*, 1992, 48, 9251–9260.
- [22] Sheldrick, G.M. Phase annealing in SHELX-90-direct methods for larger structures. *Acta Crystallogr.*, 1990, A46, 467–473.
- [23] Sheldrick, G.M. SHELXL-97, a Computer Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany. 1997.
- [24] Sunderland, P.T., Woon, E.C.Y., Dhami, A., Bergin, A.B., Mahon, M.F., Wood, P.J., Jones, L.A., Tully, S.R., Lloyd, M.D., Thompson, A.S., Javaid, H., Martin N.M.B., Threadgill, M.D. 5-Benzamidoisoquinolin-1-ones and 5-(ω-carboxyalkyl)isoquinolin-1-ones as isoform-selective inhibitors of poly(ADP-ribose) polymerase 2 (PARP-2). J. Med. Chem., 2011, 54, 2049–2059.
- [25] Ressurreição, A.S.M., Delatouche, R., Gennari, C., Piarulli, U. Bifunctional 2,5-diketopiperazines as rigid three-dimensional scaffolds in receptors and peptidomimetics. Eur. J. Org. Chem., 2011, 14, 217–228.
- [26] Cai, S., Kong, X., Wang, W., Zhou, H., Zhu, T., Li, D., Gu, Q. Aspergilazine A, a diketopiperazine dimer with a rare N-1 to C-6 linkage, from a marine-derived fungus Aspergillus taichungensis. Tetrahedron Lett., 2012, 53, 2615–2617.